visualization_utils.py 21 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A set of functions that are used for visualization.

These functions often receive an image, perform some visualization on the image.
The functions do not return a value, instead they modify the image itself.

"""
import collections
23
24
import functools
import matplotlib.pyplot as plt
25
26
27
28
29
import numpy as np
import PIL.Image as Image
import PIL.ImageColor as ImageColor
import PIL.ImageDraw as ImageDraw
import PIL.ImageFont as ImageFont
30
import six
thess's avatar
thess committed
31
import tensorflow as tf
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84


_TITLE_LEFT_MARGIN = 10
_TITLE_TOP_MARGIN = 10
STANDARD_COLORS = [
    'AliceBlue', 'Chartreuse', 'Aqua', 'Aquamarine', 'Azure', 'Beige', 'Bisque',
    'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue', 'AntiqueWhite',
    'Chocolate', 'Coral', 'CornflowerBlue', 'Cornsilk', 'Crimson', 'Cyan',
    'DarkCyan', 'DarkGoldenRod', 'DarkGrey', 'DarkKhaki', 'DarkOrange',
    'DarkOrchid', 'DarkSalmon', 'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet',
    'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite',
    'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'Gold', 'GoldenRod',
    'Salmon', 'Tan', 'HoneyDew', 'HotPink', 'IndianRed', 'Ivory', 'Khaki',
    'Lavender', 'LavenderBlush', 'LawnGreen', 'LemonChiffon', 'LightBlue',
    'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray', 'LightGrey',
    'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen', 'LightSkyBlue',
    'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue', 'LightYellow', 'Lime',
    'LimeGreen', 'Linen', 'Magenta', 'MediumAquaMarine', 'MediumOrchid',
    'MediumPurple', 'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen',
    'MediumTurquoise', 'MediumVioletRed', 'MintCream', 'MistyRose', 'Moccasin',
    'NavajoWhite', 'OldLace', 'Olive', 'OliveDrab', 'Orange', 'OrangeRed',
    'Orchid', 'PaleGoldenRod', 'PaleGreen', 'PaleTurquoise', 'PaleVioletRed',
    'PapayaWhip', 'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple',
    'Red', 'RosyBrown', 'RoyalBlue', 'SaddleBrown', 'Green', 'SandyBrown',
    'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue',
    'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue', 'GreenYellow',
    'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Violet', 'Wheat', 'White',
    'WhiteSmoke', 'Yellow', 'YellowGreen'
]


def save_image_array_as_png(image, output_path):
  """Saves an image (represented as a numpy array) to PNG.

  Args:
    image: a numpy array with shape [height, width, 3].
    output_path: path to which image should be written.
  """
  image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
  with tf.gfile.Open(output_path, 'w') as fid:
    image_pil.save(fid, 'PNG')


def encode_image_array_as_png_str(image):
  """Encodes a numpy array into a PNG string.

  Args:
    image: a numpy array with shape [height, width, 3].

  Returns:
    PNG encoded image string.
  """
  image_pil = Image.fromarray(np.uint8(image))
85
  output = six.BytesIO()
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
  image_pil.save(output, format='PNG')
  png_string = output.getvalue()
  output.close()
  return png_string


def draw_bounding_box_on_image_array(image,
                                     ymin,
                                     xmin,
                                     ymax,
                                     xmax,
                                     color='red',
                                     thickness=4,
                                     display_str_list=(),
                                     use_normalized_coordinates=True):
  """Adds a bounding box to an image (numpy array).

  Args:
    image: a numpy array with shape [height, width, 3].
    ymin: ymin of bounding box in normalized coordinates (same below).
    xmin: xmin of bounding box.
    ymax: ymax of bounding box.
    xmax: xmax of bounding box.
    color: color to draw bounding box. Default is red.
    thickness: line thickness. Default value is 4.
    display_str_list: list of strings to display in box
                      (each to be shown on its own line).
    use_normalized_coordinates: If True (default), treat coordinates
      ymin, xmin, ymax, xmax as relative to the image.  Otherwise treat
      coordinates as absolute.
  """
  image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
  draw_bounding_box_on_image(image_pil, ymin, xmin, ymax, xmax, color,
                             thickness, display_str_list,
                             use_normalized_coordinates)
  np.copyto(image, np.array(image_pil))


def draw_bounding_box_on_image(image,
                               ymin,
                               xmin,
                               ymax,
                               xmax,
                               color='red',
                               thickness=4,
                               display_str_list=(),
                               use_normalized_coordinates=True):
  """Adds a bounding box to an image.

  Each string in display_str_list is displayed on a separate line above the
  bounding box in black text on a rectangle filled with the input 'color'.
137
138
  If the top of the bounding box extends to the edge of the image, the strings
  are displayed below the bounding box.
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

  Args:
    image: a PIL.Image object.
    ymin: ymin of bounding box.
    xmin: xmin of bounding box.
    ymax: ymax of bounding box.
    xmax: xmax of bounding box.
    color: color to draw bounding box. Default is red.
    thickness: line thickness. Default value is 4.
    display_str_list: list of strings to display in box
                      (each to be shown on its own line).
    use_normalized_coordinates: If True (default), treat coordinates
      ymin, xmin, ymax, xmax as relative to the image.  Otherwise treat
      coordinates as absolute.
  """
  draw = ImageDraw.Draw(image)
  im_width, im_height = image.size
  if use_normalized_coordinates:
    (left, right, top, bottom) = (xmin * im_width, xmax * im_width,
                                  ymin * im_height, ymax * im_height)
  else:
    (left, right, top, bottom) = (xmin, xmax, ymin, ymax)
  draw.line([(left, top), (left, bottom), (right, bottom),
             (right, top), (left, top)], width=thickness, fill=color)
163
164
165
166
  try:
    font = ImageFont.truetype('arial.ttf', 24)
  except IOError:
    font = ImageFont.load_default()
167

168
169
170
171
172
173
174
175
176
177
178
  # If the total height of the display strings added to the top of the bounding
  # box exceeds the top of the image, stack the strings below the bounding box
  # instead of above.
  display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
  # Each display_str has a top and bottom margin of 0.05x.
  total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)

  if top > total_display_str_height:
    text_bottom = top
  else:
    text_bottom = bottom + total_display_str_height
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
  # Reverse list and print from bottom to top.
  for display_str in display_str_list[::-1]:
    text_width, text_height = font.getsize(display_str)
    margin = np.ceil(0.05 * text_height)
    draw.rectangle(
        [(left, text_bottom - text_height - 2 * margin), (left + text_width,
                                                          text_bottom)],
        fill=color)
    draw.text(
        (left + margin, text_bottom - text_height - margin),
        display_str,
        fill='black',
        font=font)
    text_bottom -= text_height - 2 * margin


def draw_bounding_boxes_on_image_array(image,
                                       boxes,
                                       color='red',
                                       thickness=4,
                                       display_str_list_list=()):
  """Draws bounding boxes on image (numpy array).

  Args:
    image: a numpy array object.
    boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
           The coordinates are in normalized format between [0, 1].
    color: color to draw bounding box. Default is red.
    thickness: line thickness. Default value is 4.
    display_str_list_list: list of list of strings.
                           a list of strings for each bounding box.
                           The reason to pass a list of strings for a
                           bounding box is that it might contain
                           multiple labels.

  Raises:
    ValueError: if boxes is not a [N, 4] array
  """
  image_pil = Image.fromarray(image)
  draw_bounding_boxes_on_image(image_pil, boxes, color, thickness,
                               display_str_list_list)
  np.copyto(image, np.array(image_pil))


def draw_bounding_boxes_on_image(image,
                                 boxes,
                                 color='red',
                                 thickness=4,
                                 display_str_list_list=()):
  """Draws bounding boxes on image.

  Args:
    image: a PIL.Image object.
    boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax).
           The coordinates are in normalized format between [0, 1].
    color: color to draw bounding box. Default is red.
    thickness: line thickness. Default value is 4.
    display_str_list_list: list of list of strings.
                           a list of strings for each bounding box.
                           The reason to pass a list of strings for a
                           bounding box is that it might contain
                           multiple labels.

  Raises:
    ValueError: if boxes is not a [N, 4] array
  """
  boxes_shape = boxes.shape
  if not boxes_shape:
    return
  if len(boxes_shape) != 2 or boxes_shape[1] != 4:
    raise ValueError('Input must be of size [N, 4]')
  for i in range(boxes_shape[0]):
    display_str_list = ()
    if display_str_list_list:
      display_str_list = display_str_list_list[i]
    draw_bounding_box_on_image(image, boxes[i, 0], boxes[i, 1], boxes[i, 2],
                               boxes[i, 3], color, thickness, display_str_list)


258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
def draw_bounding_boxes_on_image_tensors(images,
                                         boxes,
                                         classes,
                                         scores,
                                         category_index,
                                         max_boxes_to_draw=20,
                                         min_score_thresh=0.2):
  """Draws bounding boxes on batch of image tensors.

  Args:
    images: A 4D uint8 image tensor of shape [N, H, W, C].
    boxes: [N, max_detections, 4] float32 tensor of detection boxes.
    classes: [N, max_detections] int tensor of detection classes. Note that
      classes are 1-indexed.
    scores: [N, max_detections] float32 tensor of detection scores.
    category_index: a dict that maps integer ids to category dicts. e.g.
      {1: {1: 'dog'}, 2: {2: 'cat'}, ...}
    max_boxes_to_draw: Maximum number of boxes to draw on an image. Default 20.
    min_score_thresh: Minimum score threshold for visualization. Default 0.2.

  Returns:
    4D image tensor of type uint8, with boxes drawn on top.
  """
  visualize_boxes_fn = functools.partial(
      visualize_boxes_and_labels_on_image_array,
      category_index=category_index,
      instance_masks=None,
      keypoints=None,
      use_normalized_coordinates=True,
      max_boxes_to_draw=max_boxes_to_draw,
      min_score_thresh=min_score_thresh,
      agnostic_mode=False,
      line_thickness=4)

  def draw_boxes((image, boxes, classes, scores)):
    """Draws boxes on image."""
    image_with_boxes = tf.py_func(visualize_boxes_fn,
                                  [image, boxes, classes, scores], tf.uint8)
    return image_with_boxes

  images = tf.map_fn(
      draw_boxes, (images, boxes, classes, scores),
      dtype=tf.uint8,
      back_prop=False)
  return images


305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
def draw_keypoints_on_image_array(image,
                                  keypoints,
                                  color='red',
                                  radius=2,
                                  use_normalized_coordinates=True):
  """Draws keypoints on an image (numpy array).

  Args:
    image: a numpy array with shape [height, width, 3].
    keypoints: a numpy array with shape [num_keypoints, 2].
    color: color to draw the keypoints with. Default is red.
    radius: keypoint radius. Default value is 2.
    use_normalized_coordinates: if True (default), treat keypoint values as
      relative to the image.  Otherwise treat them as absolute.
  """
  image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
  draw_keypoints_on_image(image_pil, keypoints, color, radius,
                          use_normalized_coordinates)
  np.copyto(image, np.array(image_pil))


def draw_keypoints_on_image(image,
                            keypoints,
                            color='red',
                            radius=2,
                            use_normalized_coordinates=True):
  """Draws keypoints on an image.

  Args:
    image: a PIL.Image object.
    keypoints: a numpy array with shape [num_keypoints, 2].
    color: color to draw the keypoints with. Default is red.
    radius: keypoint radius. Default value is 2.
    use_normalized_coordinates: if True (default), treat keypoint values as
      relative to the image.  Otherwise treat them as absolute.
  """
  draw = ImageDraw.Draw(image)
  im_width, im_height = image.size
  keypoints_x = [k[1] for k in keypoints]
  keypoints_y = [k[0] for k in keypoints]
  if use_normalized_coordinates:
    keypoints_x = tuple([im_width * x for x in keypoints_x])
    keypoints_y = tuple([im_height * y for y in keypoints_y])
  for keypoint_x, keypoint_y in zip(keypoints_x, keypoints_y):
    draw.ellipse([(keypoint_x - radius, keypoint_y - radius),
                  (keypoint_x + radius, keypoint_y + radius)],
                 outline=color, fill=color)


def draw_mask_on_image_array(image, mask, color='red', alpha=0.7):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
359
360
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
361
362
363
364
365
366
367
368
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.7)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
369
370
371
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    raise ValueError('`mask` elements should be in [0, 1]')
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB')))


def visualize_boxes_and_labels_on_image_array(image,
                                              boxes,
                                              classes,
                                              scores,
                                              category_index,
                                              instance_masks=None,
                                              keypoints=None,
                                              use_normalized_coordinates=False,
                                              max_boxes_to_draw=20,
                                              min_score_thresh=.5,
                                              agnostic_mode=False,
                                              line_thickness=4):
  """Overlay labeled boxes on an image with formatted scores and label names.

  This function groups boxes that correspond to the same location
  and creates a display string for each detection and overlays these
400
401
  on the image. Note that this function modifies the image in place, and returns
  that same image.
402
403
404
405

  Args:
    image: uint8 numpy array with shape (img_height, img_width, 3)
    boxes: a numpy array of shape [N, 4]
406
407
    classes: a numpy array of shape [N]. Note that class indices are 1-based,
      and match the keys in the label map.
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    scores: a numpy array of shape [N] or None.  If scores=None, then
      this function assumes that the boxes to be plotted are groundtruth
      boxes and plot all boxes as black with no classes or scores.
    category_index: a dict containing category dictionaries (each holding
      category index `id` and category name `name`) keyed by category indices.
    instance_masks: a numpy array of shape [N, image_height, image_width], can
      be None
    keypoints: a numpy array of shape [N, num_keypoints, 2], can
      be None
    use_normalized_coordinates: whether boxes is to be interpreted as
      normalized coordinates or not.
    max_boxes_to_draw: maximum number of boxes to visualize.  If None, draw
      all boxes.
    min_score_thresh: minimum score threshold for a box to be visualized
    agnostic_mode: boolean (default: False) controlling whether to evaluate in
      class-agnostic mode or not.  This mode will display scores but ignore
      classes.
    line_thickness: integer (default: 4) controlling line width of the boxes.
426
427
428

  Returns:
    uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes.
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
  """
  # Create a display string (and color) for every box location, group any boxes
  # that correspond to the same location.
  box_to_display_str_map = collections.defaultdict(list)
  box_to_color_map = collections.defaultdict(str)
  box_to_instance_masks_map = {}
  box_to_keypoints_map = collections.defaultdict(list)
  if not max_boxes_to_draw:
    max_boxes_to_draw = boxes.shape[0]
  for i in range(min(max_boxes_to_draw, boxes.shape[0])):
    if scores is None or scores[i] > min_score_thresh:
      box = tuple(boxes[i].tolist())
      if instance_masks is not None:
        box_to_instance_masks_map[box] = instance_masks[i]
      if keypoints is not None:
        box_to_keypoints_map[box].extend(keypoints[i])
      if scores is None:
        box_to_color_map[box] = 'black'
      else:
        if not agnostic_mode:
          if classes[i] in category_index.keys():
            class_name = category_index[classes[i]]['name']
          else:
            class_name = 'N/A'
          display_str = '{}: {}%'.format(
              class_name,
              int(100*scores[i]))
        else:
          display_str = 'score: {}%'.format(int(100 * scores[i]))
        box_to_display_str_map[box].append(display_str)
        if agnostic_mode:
          box_to_color_map[box] = 'DarkOrange'
        else:
          box_to_color_map[box] = STANDARD_COLORS[
              classes[i] % len(STANDARD_COLORS)]

  # Draw all boxes onto image.
466
  for box, color in box_to_color_map.items():
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    ymin, xmin, ymax, xmax = box
    if instance_masks is not None:
      draw_mask_on_image_array(
          image,
          box_to_instance_masks_map[box],
          color=color
      )
    draw_bounding_box_on_image_array(
        image,
        ymin,
        xmin,
        ymax,
        xmax,
        color=color,
        thickness=line_thickness,
        display_str_list=box_to_display_str_map[box],
        use_normalized_coordinates=use_normalized_coordinates)
    if keypoints is not None:
      draw_keypoints_on_image_array(
          image,
          box_to_keypoints_map[box],
          color=color,
          radius=line_thickness / 2,
          use_normalized_coordinates=use_normalized_coordinates)
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

  return image


def add_cdf_image_summary(values, name):
  """Adds a tf.summary.image for a CDF plot of the values.

  Normalizes `values` such that they sum to 1, plots the cumulative distribution
  function and creates a tf image summary.

  Args:
    values: a 1-D float32 tensor containing the values.
    name: name for the image summary.
  """
  def cdf_plot(values):
    """Numpy function to plot CDF."""
    normalized_values = values / np.sum(values)
    sorted_values = np.sort(normalized_values)
    cumulative_values = np.cumsum(sorted_values)
    fraction_of_examples = (np.arange(cumulative_values.size, dtype=np.float32)
                            / cumulative_values.size)
    fig = plt.figure(frameon=False)
    ax = fig.add_subplot('111')
    ax.plot(fraction_of_examples, cumulative_values)
    ax.set_ylabel('cumulative normalized values')
    ax.set_xlabel('fraction of examples')
    fig.canvas.draw()
    width, height = fig.get_size_inches() * fig.get_dpi()
    image = np.fromstring(fig.canvas.tostring_rgb(), dtype='uint8').reshape(
        1, height, width, 3)
    return image
  cdf_plot = tf.py_func(cdf_plot, [values], tf.uint8)
  tf.summary.image(name, cdf_plot)