optimization.py 6.59 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions and classes related to optimization (weight updates)."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import re

import tensorflow as tf


class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule):
  """Applys a warmup schedule on a given learning rate decay schedule."""

  def __init__(
      self,
      initial_learning_rate,
      decay_schedule_fn,
      warmup_steps,
      power=1.0,
      name=None):
    super(WarmUp, self).__init__()
    self.initial_learning_rate = initial_learning_rate
    self.warmup_steps = warmup_steps
    self.power = power
    self.decay_schedule_fn = decay_schedule_fn
    self.name = name

  def __call__(self, step):
    with tf.name_scope(self.name or 'WarmUp') as name:
      # Implements polynomial warmup. i.e., if global_step < warmup_steps, the
      # learning rate will be `global_step/num_warmup_steps * init_lr`.
      global_step_float = tf.cast(step, tf.float32)
      warmup_steps_float = tf.cast(self.warmup_steps, tf.float32)
      warmup_percent_done = global_step_float / warmup_steps_float
      warmup_learning_rate = (
          self.initial_learning_rate *
          tf.math.pow(warmup_percent_done, self.power))
      return tf.cond(global_step_float < warmup_steps_float,
                     lambda: warmup_learning_rate,
                     lambda: self.decay_schedule_fn(step),
                     name=name)

  def get_config(self):
    return {
        'initial_learning_rate': self.initial_learning_rate,
        'decay_schedule_fn': self.decay_schedule_fn,
        'warmup_steps': self.warmup_steps,
        'power': self.power,
        'name': self.name
    }


def create_optimizer(init_lr, num_train_steps, num_warmup_steps):
  """Creates an optimizer with learning rate schedule."""
  # Implements linear decay of the learning rate.
  learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay(
      initial_learning_rate=init_lr,
      decay_steps=num_train_steps,
      end_learning_rate=0.0)
  if num_warmup_steps:
    learning_rate_fn = WarmUp(initial_learning_rate=init_lr,
                              decay_schedule_fn=learning_rate_fn,
                              warmup_steps=num_warmup_steps)
  optimizer = AdamWeightDecay(
      learning_rate=learning_rate_fn,
      weight_decay_rate=0.01,
      beta_1=0.9,
      beta_2=0.999,
      epsilon=1e-6,
      exclude_from_weight_decay=['layer_norm', 'bias'])
  return optimizer


class AdamWeightDecay(tf.keras.optimizers.Adam):
  """Adam enables L2 weight decay and clip_by_global_norm on gradients.

  Just adding the square of the weights to the loss function is *not* the
  correct way of using L2 regularization/weight decay with Adam, since that will
  interact with the m and v parameters in strange ways.

  Instead we want ot decay the weights in a manner that doesn't interact with
  the m/v parameters. This is equivalent to adding the square of the weights to
  the loss with plain (non-momentum) SGD.
  """

  def __init__(self,
               learning_rate=0.001,
               beta_1=0.9,
               beta_2=0.999,
               epsilon=1e-7,
               amsgrad=False,
               weight_decay_rate=0.0,
               exclude_from_weight_decay=None,
               name='AdamWeightDecay',
               **kwargs):
    super(AdamWeightDecay, self).__init__(
        learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs)
    self._set_hyper('weight_decay_rate', weight_decay_rate)
    self._exclude_from_weight_decay = exclude_from_weight_decay

  @classmethod
  def from_config(cls, config):
    """Creates an optimizer from its config with WarmUp custom object."""
    custom_objects = {'WarmUp': WarmUp}
    return super(AdamWeightDecay, cls).from_config(
        config, custom_objects=custom_objects)

  def _decay_weights_op(self, var, learning_rate):
    do_decay = self._do_use_weight_decay(var.name)
    if do_decay:
      return var.assign_sub(
          learning_rate * var *
          self._get_hyper('weight_decay_rate'),
          use_locking=self._use_locking)
    return tf.no_op()

  def apply_gradients(self, grads_and_vars, name=None):
    grads, tvars = list(zip(*grads_and_vars))
    (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
    return super(AdamWeightDecay, self).apply_gradients(zip(grads, tvars))

137
  def _get_lr(self, var_device, var_dtype, apply_state):
138
    """Retrieves the learning rate with the given state."""
139
140
    if apply_state is None:
      return self._decayed_lr_t[var_dtype], {}
141

142
143
144
145
146
    apply_state = apply_state or {}
    coefficients = apply_state.get((var_device, var_dtype))
    if coefficients is None:
      coefficients = self._fallback_apply_state(var_device, var_dtype)
      apply_state[(var_device, var_dtype)] = coefficients
147

148
149
150
151
    return coefficients['lr_t'], dict(apply_state=apply_state)

  def _resource_apply_dense(self, grad, var, apply_state=None):
    lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
152
153
    with tf.control_dependencies([self._decay_weights_op(var, lr_t)]):
      return super(AdamWeightDecay, self)._resource_apply_dense(
154
          grad, var, **kwargs)
155

156
157
  def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
    lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
158
159
    with tf.control_dependencies([self._decay_weights_op(var, lr_t)]):
      return super(AdamWeightDecay, self)._resource_apply_sparse(
160
          grad, var, indices, **kwargs)
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

  def get_config(self):
    config = super(AdamWeightDecay, self).get_config()
    config.update({
        'weight_decay_rate':
            self._serialize_hyperparameter('weight_decay_rate'),
    })
    return config

  def _do_use_weight_decay(self, param_name):
    """Whether to use L2 weight decay for `param_name`."""
    if self._exclude_from_weight_decay:
      for r in self._exclude_from_weight_decay:
        if re.search(r, param_name) is not None:
          return False
    return True