encoders.py 9.71 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
16
17
"""Transformer Encoders.

Hongkun Yu's avatar
Hongkun Yu committed
18
Includes configurations and factory methods.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19
"""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
20
from typing import Optional
Hongkun Yu's avatar
Hongkun Yu committed
21
22

from absl import logging
23
import dataclasses
Hongkun Yu's avatar
Hongkun Yu committed
24
import gin
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
25
import tensorflow as tf
26

Hongkun Yu's avatar
Hongkun Yu committed
27
from official.modeling import hyperparams
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
28
from official.modeling import tf_utils
29
from official.nlp import keras_nlp
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
30
from official.nlp.modeling import networks
31
32
33


@dataclasses.dataclass
Hongkun Yu's avatar
Hongkun Yu committed
34
class BertEncoderConfig(hyperparams.Config):
35
36
37
38
39
40
  """BERT encoder configuration."""
  vocab_size: int = 30522
  hidden_size: int = 768
  num_layers: int = 12
  num_attention_heads: int = 12
  hidden_activation: str = "gelu"
Chen Chen's avatar
Chen Chen committed
41
  intermediate_size: int = 3072
42
43
44
45
46
  dropout_rate: float = 0.1
  attention_dropout_rate: float = 0.1
  max_position_embeddings: int = 512
  type_vocab_size: int = 2
  initializer_range: float = 0.02
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
47
  embedding_size: Optional[int] = None
Chen Chen's avatar
Chen Chen committed
48
  return_all_encoder_outputs: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
49
50


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
@dataclasses.dataclass
class MobileBertEncoderConfig(hyperparams.Config):
  """MobileBERT encoder configuration.

  Attributes:
    word_vocab_size: number of words in the vocabulary.
    word_embed_size: word embedding size.
    type_vocab_size: number of word types.
    max_sequence_length: maximum length of input sequence.
    num_blocks: number of transformer block in the encoder model.
    hidden_size: the hidden size for the transformer block.
    num_attention_heads: number of attention heads in the transformer block.
    intermediate_size: the size of the "intermediate" (a.k.a., feed
      forward) layer.
    intermediate_act_fn: the non-linear activation function to apply
      to the output of the intermediate/feed-forward layer.
    hidden_dropout_prob: dropout probability for the hidden layers.
    attention_probs_dropout_prob: dropout probability of the attention
      probabilities.
    intra_bottleneck_size: the size of bottleneck.
    initializer_range: The stddev of the truncated_normal_initializer for
        initializing all weight matrices.
    key_query_shared_bottleneck: whether to share linear transformation for
      keys and queries.
    num_feedforward_networks: number of stacked feed-forward networks.
    normalization_type: the type of normalization_type, only 'no_norm' and
      'layer_norm' are supported. 'no_norm' represents the element-wise linear
      transformation for the student model, as suggested by the original
      MobileBERT paper. 'layer_norm' is used for the teacher model.
    classifier_activation: if using the tanh activation for the final
      representation of the [CLS] token in fine-tuning.
  """
  word_vocab_size: int = 30522
  word_embed_size: int = 128
  type_vocab_size: int = 2
  max_sequence_length: int = 512
  num_blocks: int = 24
  hidden_size: int = 512
  num_attention_heads: int = 4
  intermediate_size: int = 4096
  intermediate_act_fn: str = "gelu"
  hidden_dropout_prob: float = 0.1
  attention_probs_dropout_prob: float = 0.1
  intra_bottleneck_size: int = 1024
  initializer_range: float = 0.02
  key_query_shared_bottleneck: bool = False
  num_feedforward_networks: int = 1
  normalization_type: str = "layer_norm"
  classifier_activation: bool = True


Chen Chen's avatar
Chen Chen committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
@dataclasses.dataclass
class AlbertEncoderConfig(hyperparams.Config):
  """ALBERT encoder configuration."""
  vocab_size: int = 30000
  embedding_width: int = 128
  hidden_size: int = 768
  num_layers: int = 12
  num_attention_heads: int = 12
  hidden_activation: str = "gelu"
  intermediate_size: int = 3072
  dropout_rate: float = 0.0
  attention_dropout_rate: float = 0.0
  max_position_embeddings: int = 512
  type_vocab_size: int = 2
  initializer_range: float = 0.02


Hongkun Yu's avatar
Hongkun Yu committed
119
120
121
122
@dataclasses.dataclass
class EncoderConfig(hyperparams.OneOfConfig):
  """Encoder configuration."""
  type: Optional[str] = "bert"
Chen Chen's avatar
Chen Chen committed
123
  albert: AlbertEncoderConfig = AlbertEncoderConfig()
Hongkun Yu's avatar
Hongkun Yu committed
124
  bert: BertEncoderConfig = BertEncoderConfig()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
125
  mobilebert: MobileBertEncoderConfig = MobileBertEncoderConfig()
Hongkun Yu's avatar
Hongkun Yu committed
126
127
128


ENCODER_CLS = {
129
    "bert": networks.BertEncoder,
Chen Chen's avatar
Chen Chen committed
130
    "mobilebert": networks.MobileBERTEncoder,
Chen Chen's avatar
Chen Chen committed
131
    "albert": networks.AlbertTransformerEncoder,
Hongkun Yu's avatar
Hongkun Yu committed
132
133
134
135
}


@gin.configurable
136
137
138
139
140
def build_encoder(
    config: EncoderConfig,
    embedding_layer: Optional[keras_nlp.layers.OnDeviceEmbedding] = None,
    encoder_cls=None,
    bypass_config: bool = False):
Hongkun Yu's avatar
Hongkun Yu committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
  """Instantiate a Transformer encoder network from EncoderConfig.

  Args:
    config: the one-of encoder config, which provides encoder parameters of a
      chosen encoder.
    embedding_layer: an external embedding layer passed to the encoder.
    encoder_cls: an external encoder cls not included in the supported encoders,
      usually used by gin.configurable.
    bypass_config: whether to ignore config instance to create the object with
      `encoder_cls`.

  Returns:
    An encoder instance.
  """
  encoder_type = config.type
  encoder_cfg = config.get()
  encoder_cls = encoder_cls or ENCODER_CLS[encoder_type]
  logging.info("Encoder class: %s to build...", encoder_cls.__name__)
  if bypass_config:
    return encoder_cls()
Hongkun Yu's avatar
Hongkun Yu committed
161
162
  if encoder_cls.__name__ == "EncoderScaffold":
    embedding_cfg = dict(
Hongkun Yu's avatar
Hongkun Yu committed
163
164
165
166
        vocab_size=encoder_cfg.vocab_size,
        type_vocab_size=encoder_cfg.type_vocab_size,
        hidden_size=encoder_cfg.hidden_size,
        max_seq_length=encoder_cfg.max_position_embeddings,
Hongkun Yu's avatar
Hongkun Yu committed
167
        initializer=tf.keras.initializers.TruncatedNormal(
Hongkun Yu's avatar
Hongkun Yu committed
168
169
            stddev=encoder_cfg.initializer_range),
        dropout_rate=encoder_cfg.dropout_rate,
Hongkun Yu's avatar
Hongkun Yu committed
170
171
    )
    hidden_cfg = dict(
Hongkun Yu's avatar
Hongkun Yu committed
172
173
        num_attention_heads=encoder_cfg.num_attention_heads,
        intermediate_size=encoder_cfg.intermediate_size,
Hongkun Yu's avatar
Hongkun Yu committed
174
        intermediate_activation=tf_utils.get_activation(
Hongkun Yu's avatar
Hongkun Yu committed
175
176
177
            encoder_cfg.hidden_activation),
        dropout_rate=encoder_cfg.dropout_rate,
        attention_dropout_rate=encoder_cfg.attention_dropout_rate,
Hongkun Yu's avatar
Hongkun Yu committed
178
        kernel_initializer=tf.keras.initializers.TruncatedNormal(
Hongkun Yu's avatar
Hongkun Yu committed
179
            stddev=encoder_cfg.initializer_range),
Hongkun Yu's avatar
Hongkun Yu committed
180
181
182
183
    )
    kwargs = dict(
        embedding_cfg=embedding_cfg,
        hidden_cfg=hidden_cfg,
Hongkun Yu's avatar
Hongkun Yu committed
184
185
        num_hidden_instances=encoder_cfg.num_layers,
        pooled_output_dim=encoder_cfg.hidden_size,
Hongkun Yu's avatar
Hongkun Yu committed
186
        pooler_layer_initializer=tf.keras.initializers.TruncatedNormal(
Chen Chen's avatar
Chen Chen committed
187
            stddev=encoder_cfg.initializer_range),
188
189
        return_all_layer_outputs=encoder_cfg.return_all_encoder_outputs,
        dict_outputs=True)
Hongkun Yu's avatar
Hongkun Yu committed
190
191
    return encoder_cls(**kwargs)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
  if encoder_type == "mobilebert":
    return encoder_cls(
        word_vocab_size=encoder_cfg.word_vocab_size,
        word_embed_size=encoder_cfg.word_embed_size,
        type_vocab_size=encoder_cfg.type_vocab_size,
        max_sequence_length=encoder_cfg.max_sequence_length,
        num_blocks=encoder_cfg.num_blocks,
        hidden_size=encoder_cfg.hidden_size,
        num_attention_heads=encoder_cfg.num_attention_heads,
        intermediate_size=encoder_cfg.intermediate_size,
        intermediate_act_fn=encoder_cfg.intermediate_act_fn,
        hidden_dropout_prob=encoder_cfg.hidden_dropout_prob,
        attention_probs_dropout_prob=encoder_cfg.attention_probs_dropout_prob,
        intra_bottleneck_size=encoder_cfg.intra_bottleneck_size,
Chen Chen's avatar
Chen Chen committed
206
        initializer_range=encoder_cfg.initializer_range,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
207
208
209
        key_query_shared_bottleneck=encoder_cfg.key_query_shared_bottleneck,
        num_feedforward_networks=encoder_cfg.num_feedforward_networks,
        normalization_type=encoder_cfg.normalization_type,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
210
        classifier_activation=encoder_cfg.classifier_activation)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
211

Chen Chen's avatar
Chen Chen committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
  if encoder_type == "albert":
    return encoder_cls(
        vocab_size=encoder_cfg.vocab_size,
        embedding_width=encoder_cfg.embedding_width,
        hidden_size=encoder_cfg.hidden_size,
        num_layers=encoder_cfg.num_layers,
        num_attention_heads=encoder_cfg.num_attention_heads,
        max_sequence_length=encoder_cfg.max_position_embeddings,
        type_vocab_size=encoder_cfg.type_vocab_size,
        intermediate_size=encoder_cfg.intermediate_size,
        activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
        dropout_rate=encoder_cfg.dropout_rate,
        attention_dropout_rate=encoder_cfg.attention_dropout_rate,
        initializer=tf.keras.initializers.TruncatedNormal(
226
227
            stddev=encoder_cfg.initializer_range),
        dict_outputs=True)
Chen Chen's avatar
Chen Chen committed
228

Hongkun Yu's avatar
Hongkun Yu committed
229
230
231
232
233
234
235
236
237
238
239
240
241
  # Uses the default BERTEncoder configuration schema to create the encoder.
  # If it does not match, please add a switch branch by the encoder type.
  return encoder_cls(
      vocab_size=encoder_cfg.vocab_size,
      hidden_size=encoder_cfg.hidden_size,
      num_layers=encoder_cfg.num_layers,
      num_attention_heads=encoder_cfg.num_attention_heads,
      intermediate_size=encoder_cfg.intermediate_size,
      activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
      dropout_rate=encoder_cfg.dropout_rate,
      attention_dropout_rate=encoder_cfg.attention_dropout_rate,
      max_sequence_length=encoder_cfg.max_position_embeddings,
      type_vocab_size=encoder_cfg.type_vocab_size,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
242
      initializer=tf.keras.initializers.TruncatedNormal(
Hongkun Yu's avatar
Hongkun Yu committed
243
244
          stddev=encoder_cfg.initializer_range),
      embedding_width=encoder_cfg.embedding_size,
Chen Chen's avatar
Chen Chen committed
245
      embedding_layer=embedding_layer,
246
247
      return_all_encoder_outputs=encoder_cfg.return_all_encoder_outputs,
      dict_outputs=True)