recomputing_dropout.py 5.81 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Keras dropout layer that is aware of `RecomputeContext`."""

import numpy as np
import tensorflow as tf

from official.nlp.projects.bigbird import recompute_grad as recompute_grad_lib
from official.nlp.projects.bigbird import stateless_dropout as stateless_dropout_lib


# Reimplements internal function
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/framework/smart_cond.py.
def smart_cond(pred, true_fn=None, false_fn=None, name=None):
  """Return either `true_fn()` if predicate `pred` is true else `false_fn()`.

  If `pred` is a bool or has a constant value, we return either `true_fn()`
  or `false_fn()`, otherwise we use `tf.cond` to dynamically route to both.

  Arguments:
    pred: A scalar determining whether to return the result of `true_fn` or
      `false_fn`.
    true_fn: The callable to be performed if pred is true.
    false_fn: The callable to be performed if pred is false.
    name: Optional name prefix when using `tf.cond`.

  Returns:
    Tensors returned by the call to either `true_fn` or `false_fn`.

  Raises:
    TypeError: If `true_fn` or `false_fn` is not callable.
  """
  if not callable(true_fn):
    raise TypeError('`true_fn` must be callable.')
  if not callable(false_fn):
    raise TypeError('`false_fn` must be callable.')
  pred_value = tf.get_static_value(pred)
  if isinstance(pred, tf.Variable) or pred_value is None:
    return tf.cond(
        pred, true_fn=true_fn, false_fn=false_fn, name=name)
  if pred_value:
    return true_fn()
  else:
    return false_fn()


# See https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout.
class RecomputingDropout(tf.keras.layers.Layer):
  """`tf.keras.layers.Dropout` that supports `recompute_grad`."""

  def __init__(self,
               rate,
               noise_shape=None,
               seed=None,
               force_recomputation=False,
               **kwargs):
    """Initializes `RecomputingDropout`.

    Args:
      rate: Float between 0 and 1. Fraction of the input units to drop.
      noise_shape: 1D integer tensor representing the shape of the binary
        dropout mask that will be multiplied with the input. For instance, if
        inputs have shape `(batch_size, timesteps, features)` and you want the
        dropout mask to be the same for all timesteps, you can use
        `noise_shape=(batch_size, 1, features)`.
      seed: A Python integer to use as random seed.
      force_recomputation: If `True`, then raises an error if called outside a
        recompute context.
      **kwargs: Keyword arguments for `tf.keras.layers.Layer`.
    """

    super(RecomputingDropout, self).__init__(**kwargs)
    self.rate = rate
    self.noise_shape = noise_shape
    self.seed = seed
    self.force_recomputation = force_recomputation
    self.supports_masking = True
    # Create a layer-specific seed to combine with the global recompute seed.
    self._recompute_seed = (
        np.random.randint(-2**31, 2**31, dtype=np.int32)
        if seed is None else seed)

  def _get_noise_shape(self, inputs):
    # Subclasses of `Dropout` may implement `_get_noise_shape(self, inputs)`,
    # which will override `self.noise_shape`, and allows for custom noise
    # shapes with dynamically sized inputs.
    if self.noise_shape is None:
      return None

    concrete_inputs_shape = tf.shape(inputs)
    noise_shape = []
    for i, value in enumerate(self.noise_shape):
      noise_shape.append(concrete_inputs_shape[i] if value is None else value)
    return tf.convert_to_tensor(noise_shape)

  def call(self, inputs, training=None):
    """Builds computation graph.

    Args:
      inputs: Input tensor (of any rank).
      training: Python boolean indicating whether the layer should behave in
        training mode (adding dropout) or in inference mode (doing nothing).

    Returns:
      `inputs` masked according to layer configuration.

    Raises:
      ValueError: If `force_recomputation` is `True` and called outside a
        a recompute context.
    """
    if training is None:
      training = tf.keras.backend.learning_phase()

    def dropped_inputs():
      """Randomly drops elements of `inputs` when `training=True`."""
      recompute_context = recompute_grad_lib.get_recompute_context()
      if recompute_context is None:
        if self.force_recomputation:
          raise ValueError(
              'RecomputeContext is required when force_recomputation=True.')
        return tf.nn.dropout(
            inputs,
            noise_shape=self._get_noise_shape(inputs),
            seed=self.seed,
            rate=self.rate)
      seed = tf.stack([recompute_context.seed, self._recompute_seed])
      return stateless_dropout_lib.stateless_dropout(
          inputs,
          rate=self.rate,
          seed=seed,
          noise_shape=self._get_noise_shape(inputs))

    output = smart_cond(training, dropped_inputs, lambda: tf.identity(inputs))
    return output

  def compute_output_shape(self, input_shape):
    return input_shape

  def get_config(self):
    config = {
        'rate': self.rate,
        'noise_shape': self.noise_shape,
        'seed': self.seed,
        'force_recomputation': self.force_recomputation,
    }
    base_config = super(RecomputingDropout, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))