optimization.py 8.47 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions and classes related to optimization (weight updates)."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import re

23
from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
24
import tensorflow as tf
25
import tensorflow_addons.optimizers as tfa_optimizers
26
27
28


class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
29
  """Applies a warmup schedule on a given learning rate decay schedule."""
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

  def __init__(
      self,
      initial_learning_rate,
      decay_schedule_fn,
      warmup_steps,
      power=1.0,
      name=None):
    super(WarmUp, self).__init__()
    self.initial_learning_rate = initial_learning_rate
    self.warmup_steps = warmup_steps
    self.power = power
    self.decay_schedule_fn = decay_schedule_fn
    self.name = name

  def __call__(self, step):
    with tf.name_scope(self.name or 'WarmUp') as name:
      # Implements polynomial warmup. i.e., if global_step < warmup_steps, the
      # learning rate will be `global_step/num_warmup_steps * init_lr`.
      global_step_float = tf.cast(step, tf.float32)
      warmup_steps_float = tf.cast(self.warmup_steps, tf.float32)
      warmup_percent_done = global_step_float / warmup_steps_float
      warmup_learning_rate = (
          self.initial_learning_rate *
          tf.math.pow(warmup_percent_done, self.power))
      return tf.cond(global_step_float < warmup_steps_float,
                     lambda: warmup_learning_rate,
                     lambda: self.decay_schedule_fn(step),
                     name=name)

  def get_config(self):
    return {
        'initial_learning_rate': self.initial_learning_rate,
        'decay_schedule_fn': self.decay_schedule_fn,
        'warmup_steps': self.warmup_steps,
        'power': self.power,
        'name': self.name
    }


70
71
def create_optimizer(init_lr, num_train_steps, num_warmup_steps,
                     optimizer_type='adamw'):
72
73
74
75
76
77
78
79
80
81
  """Creates an optimizer with learning rate schedule."""
  # Implements linear decay of the learning rate.
  learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay(
      initial_learning_rate=init_lr,
      decay_steps=num_train_steps,
      end_learning_rate=0.0)
  if num_warmup_steps:
    learning_rate_fn = WarmUp(initial_learning_rate=init_lr,
                              decay_schedule_fn=learning_rate_fn,
                              warmup_steps=num_warmup_steps)
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

  if optimizer_type == 'adamw':
    logging.info('using Adamw optimizer')
    optimizer = AdamWeightDecay(
        learning_rate=learning_rate_fn,
        weight_decay_rate=0.01,
        beta_1=0.9,
        beta_2=0.999,
        epsilon=1e-6,
        exclude_from_weight_decay=['layer_norm', 'bias'])
  elif optimizer_type == 'lamb':
    logging.info('using Lamb optimizer')
    optimizer = tfa_optimizers.LAMB(
        learning_rate=learning_rate_fn,
        weight_decay_rate=0.01,
        beta_1=0.9,
        beta_2=0.999,
        epsilon=1e-6,
        exclude_from_weight_decay=['layer_norm', 'bias'])
  else:
    raise ValueError('Unsupported optimizer type: ', optimizer_type)

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
  return optimizer


class AdamWeightDecay(tf.keras.optimizers.Adam):
  """Adam enables L2 weight decay and clip_by_global_norm on gradients.

  Just adding the square of the weights to the loss function is *not* the
  correct way of using L2 regularization/weight decay with Adam, since that will
  interact with the m and v parameters in strange ways.

  Instead we want ot decay the weights in a manner that doesn't interact with
  the m/v parameters. This is equivalent to adding the square of the weights to
  the loss with plain (non-momentum) SGD.
  """

  def __init__(self,
               learning_rate=0.001,
               beta_1=0.9,
               beta_2=0.999,
               epsilon=1e-7,
               amsgrad=False,
               weight_decay_rate=0.0,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
126
               include_in_weight_decay=None,
127
128
129
130
131
               exclude_from_weight_decay=None,
               name='AdamWeightDecay',
               **kwargs):
    super(AdamWeightDecay, self).__init__(
        learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs)
132
    self.weight_decay_rate = weight_decay_rate
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
133
    self._include_in_weight_decay = include_in_weight_decay
134
135
136
137
138
139
140
141
142
    self._exclude_from_weight_decay = exclude_from_weight_decay

  @classmethod
  def from_config(cls, config):
    """Creates an optimizer from its config with WarmUp custom object."""
    custom_objects = {'WarmUp': WarmUp}
    return super(AdamWeightDecay, cls).from_config(
        config, custom_objects=custom_objects)

143
144
145
  def _prepare_local(self, var_device, var_dtype, apply_state):
    super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype,
                                                apply_state)
Scott Zhu's avatar
Scott Zhu committed
146
    apply_state[(var_device, var_dtype)]['weight_decay_rate'] = tf.constant(
147
148
149
        self.weight_decay_rate, name='adam_weight_decay_rate')

  def _decay_weights_op(self, var, learning_rate, apply_state):
150
151
152
153
    do_decay = self._do_use_weight_decay(var.name)
    if do_decay:
      return var.assign_sub(
          learning_rate * var *
Scott Zhu's avatar
Scott Zhu committed
154
          apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'],
155
156
157
          use_locking=self._use_locking)
    return tf.no_op()

Zongwei Zhou's avatar
Zongwei Zhou committed
158
159
160
  def apply_gradients(self,
                      grads_and_vars,
                      name=None,
161
                      experimental_aggregate_gradients=True):
162
    grads, tvars = list(zip(*grads_and_vars))
163
164
165
166
167
168
    if experimental_aggregate_gradients:
      # when experimental_aggregate_gradients = False, apply_gradients() no
      # longer implicitly allreduce gradients, users manually allreduce gradient
      # and passed the allreduced grads_and_vars. For now, the
      # clip_by_global_norm will be moved to before the explicit allreduce to
      # keep the math the same as TF 1 and pre TF 2.2 implementation.
Zongwei Zhou's avatar
Zongwei Zhou committed
169
      (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
Zongwei Zhou's avatar
Zongwei Zhou committed
170
171
172
    return super(AdamWeightDecay, self).apply_gradients(
        zip(grads, tvars),
        name=name,
173
        experimental_aggregate_gradients=experimental_aggregate_gradients)
174

175
  def _get_lr(self, var_device, var_dtype, apply_state):
176
    """Retrieves the learning rate with the given state."""
177
178
    if apply_state is None:
      return self._decayed_lr_t[var_dtype], {}
179

180
181
182
183
184
    apply_state = apply_state or {}
    coefficients = apply_state.get((var_device, var_dtype))
    if coefficients is None:
      coefficients = self._fallback_apply_state(var_device, var_dtype)
      apply_state[(var_device, var_dtype)] = coefficients
185

186
187
188
189
    return coefficients['lr_t'], dict(apply_state=apply_state)

  def _resource_apply_dense(self, grad, var, apply_state=None):
    lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
190
191
    decay = self._decay_weights_op(var, lr_t, apply_state)
    with tf.control_dependencies([decay]):
192
      return super(AdamWeightDecay, self)._resource_apply_dense(
193
          grad, var, **kwargs)
194

195
196
  def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
    lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
197
198
    decay = self._decay_weights_op(var, lr_t, apply_state)
    with tf.control_dependencies([decay]):
199
      return super(AdamWeightDecay, self)._resource_apply_sparse(
200
          grad, var, indices, **kwargs)
201
202
203
204

  def get_config(self):
    config = super(AdamWeightDecay, self).get_config()
    config.update({
205
        'weight_decay_rate': self.weight_decay_rate,
206
207
208
209
210
    })
    return config

  def _do_use_weight_decay(self, param_name):
    """Whether to use L2 weight decay for `param_name`."""
211
212
    if self.weight_decay_rate == 0:
      return False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
213
214
215
216
217
218

    if self._include_in_weight_decay:
      for r in self._include_in_weight_decay:
        if re.search(r, param_name) is not None:
          return True

219
220
221
222
223
    if self._exclude_from_weight_decay:
      for r in self._exclude_from_weight_decay:
        if re.search(r, param_name) is not None:
          return False
    return True