run_squad_helper.py 16 KB
Newer Older
Chen Chen's avatar
Chen Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Library for running BERT family models on SQuAD 1.1/2.0 in TF 2.x."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
21
import json
Chen Chen's avatar
Chen Chen committed
22
23
24
25
import os
from absl import flags
from absl import logging
import tensorflow as tf
26
from official.modeling import performance
Chen Chen's avatar
Chen Chen committed
27
28
29
30
31
from official.nlp import optimization
from official.nlp.bert import bert_models
from official.nlp.bert import common_flags
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
32
from official.nlp.bert import model_training_utils
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
33
from official.nlp.bert import squad_evaluate_v1_1
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
34
from official.nlp.bert import squad_evaluate_v2_0
Chen Chen's avatar
Chen Chen committed
35
36
37
38
39
40
41
from official.nlp.data import squad_lib_sp
from official.utils.misc import keras_utils


def define_common_squad_flags():
  """Defines common flags used by SQuAD tasks."""
  flags.DEFINE_enum(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
42
43
44
45
46
47
48
      'mode', 'train_and_eval',
      ['train_and_eval', 'train_and_predict',
       'train', 'eval', 'predict', 'export_only'],
      'One of {"train_and_eval", "train_and_predict", '
      '"train", "eval", "predict", "export_only"}. '
      '`train_and_eval`: train & predict to json files & compute eval metrics. '
      '`train_and_predict`: train & predict to json files. '
Chen Chen's avatar
Chen Chen committed
49
      '`train`: only trains the model. '
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
50
      '`eval`: predict answers from squad json file & compute eval metrics. '
Chen Chen's avatar
Chen Chen committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
      '`predict`: predict answers from the squad json file. '
      '`export_only`: will take the latest checkpoint inside '
      'model_dir and export a `SavedModel`.')
  flags.DEFINE_string('train_data_path', '',
                      'Training data path with train tfrecords.')
  flags.DEFINE_string(
      'input_meta_data_path', None,
      'Path to file that contains meta data about input '
      'to be used for training and evaluation.')
  # Model training specific flags.
  flags.DEFINE_integer('train_batch_size', 32, 'Total batch size for training.')
  # Predict processing related.
  flags.DEFINE_string('predict_file', None,
                      'Prediction data path with train tfrecords.')
  flags.DEFINE_bool(
      'do_lower_case', True,
      'Whether to lower case the input text. Should be True for uncased '
      'models and False for cased models.')
  flags.DEFINE_float(
      'null_score_diff_threshold', 0.0,
      'If null_score - best_non_null is greater than the threshold, '
      'predict null. This is only used for SQuAD v2.')
  flags.DEFINE_bool(
      'verbose_logging', False,
      'If true, all of the warnings related to data processing will be '
      'printed. A number of warnings are expected for a normal SQuAD '
      'evaluation.')
  flags.DEFINE_integer('predict_batch_size', 8,
                       'Total batch size for prediction.')
  flags.DEFINE_integer(
      'n_best_size', 20,
      'The total number of n-best predictions to generate in the '
      'nbest_predictions.json output file.')
  flags.DEFINE_integer(
      'max_answer_length', 30,
      'The maximum length of an answer that can be generated. This is needed '
      'because the start and end predictions are not conditioned on one '
      'another.')

  common_flags.define_common_bert_flags()


FLAGS = flags.FLAGS


def squad_loss_fn(start_positions,
                  end_positions,
                  start_logits,
99
                  end_logits):
Chen Chen's avatar
Chen Chen committed
100
101
102
103
104
105
106
107
108
109
  """Returns sparse categorical crossentropy for start/end logits."""
  start_loss = tf.keras.losses.sparse_categorical_crossentropy(
      start_positions, start_logits, from_logits=True)
  end_loss = tf.keras.losses.sparse_categorical_crossentropy(
      end_positions, end_logits, from_logits=True)

  total_loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2
  return total_loss


110
def get_loss_fn():
Chen Chen's avatar
Chen Chen committed
111
112
113
114
115
116
117
118
119
120
  """Gets a loss function for squad task."""

  def _loss_fn(labels, model_outputs):
    start_positions = labels['start_positions']
    end_positions = labels['end_positions']
    start_logits, end_logits = model_outputs
    return squad_loss_fn(
        start_positions,
        end_positions,
        start_logits,
121
        end_logits)
Chen Chen's avatar
Chen Chen committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

  return _loss_fn


RawResult = collections.namedtuple('RawResult',
                                   ['unique_id', 'start_logits', 'end_logits'])


def get_raw_results(predictions):
  """Converts multi-replica predictions to RawResult."""
  for unique_ids, start_logits, end_logits in zip(predictions['unique_ids'],
                                                  predictions['start_logits'],
                                                  predictions['end_logits']):
    for values in zip(unique_ids.numpy(), start_logits.numpy(),
                      end_logits.numpy()):
      yield RawResult(
          unique_id=values[0],
          start_logits=values[1].tolist(),
          end_logits=values[2].tolist())


def get_dataset_fn(input_file_pattern, max_seq_length, global_batch_size,
                   is_training):
  """Gets a closure to create a dataset.."""

  def _dataset_fn(ctx=None):
    """Returns tf.data.Dataset for distributed BERT pretraining."""
    batch_size = ctx.get_per_replica_batch_size(
        global_batch_size) if ctx else global_batch_size
    dataset = input_pipeline.create_squad_dataset(
        input_file_pattern,
        max_seq_length,
        batch_size,
        is_training=is_training,
        input_pipeline_context=ctx)
    return dataset

  return _dataset_fn


def predict_squad_customized(strategy, input_meta_data, bert_config,
                             predict_tfrecord_path, num_steps):
  """Make predictions using a Bert-based squad model."""
  predict_dataset_fn = get_dataset_fn(
      predict_tfrecord_path,
      input_meta_data['max_seq_length'],
      FLAGS.predict_batch_size,
      is_training=False)
  predict_iterator = iter(
      strategy.experimental_distribute_datasets_from_function(
          predict_dataset_fn))

  with strategy.scope():
    # Prediction always uses float32, even if training uses mixed precision.
    tf.keras.mixed_precision.experimental.set_policy('float32')
    squad_model, _ = bert_models.squad_model(
        bert_config,
        input_meta_data['max_seq_length'],
        hub_module_url=FLAGS.hub_module_url)

  checkpoint_path = tf.train.latest_checkpoint(FLAGS.model_dir)
  logging.info('Restoring checkpoints from %s', checkpoint_path)
  checkpoint = tf.train.Checkpoint(model=squad_model)
  checkpoint.restore(checkpoint_path).expect_partial()

  @tf.function
  def predict_step(iterator):
    """Predicts on distributed devices."""

    def _replicated_step(inputs):
      """Replicated prediction calculation."""
      x, _ = inputs
      unique_ids = x.pop('unique_ids')
      start_logits, end_logits = squad_model(x, training=False)
      return dict(
          unique_ids=unique_ids,
          start_logits=start_logits,
          end_logits=end_logits)

201
    outputs = strategy.run(_replicated_step, args=(next(iterator),))
Chen Chen's avatar
Chen Chen committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    return tf.nest.map_structure(strategy.experimental_local_results, outputs)

  all_results = []
  for _ in range(num_steps):
    predictions = predict_step(predict_iterator)
    for result in get_raw_results(predictions):
      all_results.append(result)
    if len(all_results) % 100 == 0:
      logging.info('Made predictions for %d records.', len(all_results))
  return all_results


def train_squad(strategy,
                input_meta_data,
                bert_config,
                custom_callbacks=None,
                run_eagerly=False):
  """Run bert squad training."""
  if strategy:
    logging.info('Training using customized training loop with distribution'
                 ' strategy.')
  # Enables XLA in Session Config. Should not be set for TPU.
  keras_utils.set_config_v2(FLAGS.enable_xla)
225
  performance.set_mixed_precision_policy(common_flags.dtype())
Chen Chen's avatar
Chen Chen committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

  epochs = FLAGS.num_train_epochs
  num_train_examples = input_meta_data['train_data_size']
  max_seq_length = input_meta_data['max_seq_length']
  steps_per_epoch = int(num_train_examples / FLAGS.train_batch_size)
  warmup_steps = int(epochs * num_train_examples * 0.1 / FLAGS.train_batch_size)
  train_input_fn = get_dataset_fn(
      FLAGS.train_data_path,
      max_seq_length,
      FLAGS.train_batch_size,
      is_training=True)

  def _get_squad_model():
    """Get Squad model and optimizer."""
    squad_model, core_model = bert_models.squad_model(
        bert_config,
        max_seq_length,
        hub_module_url=FLAGS.hub_module_url,
        hub_module_trainable=FLAGS.hub_module_trainable)
245
246
    optimizer = optimization.create_optimizer(FLAGS.learning_rate,
                                              steps_per_epoch * epochs,
247
248
                                              warmup_steps,
                                              FLAGS.optimizer_type)
249
250
251
252
253

    squad_model.optimizer = performance.configure_optimizer(
        optimizer,
        use_float16=common_flags.use_float16(),
        use_graph_rewrite=common_flags.use_graph_rewrite())
Chen Chen's avatar
Chen Chen committed
254
255
    return squad_model, core_model

256
257
258
259
  # If explicit_allreduce = True, apply_gradients() no longer implicitly
  # allreduce gradients, users manually allreduce gradient and pass the
  # allreduced grads_and_vars to apply_gradients(). clip_by_global_norm will be
  # applied to allreduced gradients.
Zongwei Zhou's avatar
Zongwei Zhou committed
260
261
262
263
264
  def clip_by_global_norm_callback(grads_and_vars):
    grads, variables = zip(*grads_and_vars)
    (clipped_grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
    return zip(clipped_grads, variables)

Chen Chen's avatar
Chen Chen committed
265
266
267
  model_training_utils.run_customized_training_loop(
      strategy=strategy,
      model_fn=_get_squad_model,
268
      loss_fn=get_loss_fn(),
Chen Chen's avatar
Chen Chen committed
269
270
271
272
273
274
275
      model_dir=FLAGS.model_dir,
      steps_per_epoch=steps_per_epoch,
      steps_per_loop=FLAGS.steps_per_loop,
      epochs=epochs,
      train_input_fn=train_input_fn,
      init_checkpoint=FLAGS.init_checkpoint,
      run_eagerly=run_eagerly,
Zongwei Zhou's avatar
Zongwei Zhou committed
276
      custom_callbacks=custom_callbacks,
277
278
      explicit_allreduce=False,
      post_allreduce_callbacks=[clip_by_global_norm_callback])
Chen Chen's avatar
Chen Chen committed
279
280


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
281
282
def prediction_output_squad(
    strategy, input_meta_data, tokenizer, bert_config, squad_lib):
Chen Chen's avatar
Chen Chen committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
  """Makes predictions for a squad dataset."""
  doc_stride = input_meta_data['doc_stride']
  max_query_length = input_meta_data['max_query_length']
  # Whether data should be in Ver 2.0 format.
  version_2_with_negative = input_meta_data.get('version_2_with_negative',
                                                False)
  eval_examples = squad_lib.read_squad_examples(
      input_file=FLAGS.predict_file,
      is_training=False,
      version_2_with_negative=version_2_with_negative)

  eval_writer = squad_lib.FeatureWriter(
      filename=os.path.join(FLAGS.model_dir, 'eval.tf_record'),
      is_training=False)
  eval_features = []

  def _append_feature(feature, is_padding):
    if not is_padding:
      eval_features.append(feature)
    eval_writer.process_feature(feature)

  # TPU requires a fixed batch size for all batches, therefore the number
  # of examples must be a multiple of the batch size, or else examples
  # will get dropped. So we pad with fake examples which are ignored
  # later on.
  kwargs = dict(
      examples=eval_examples,
      tokenizer=tokenizer,
      max_seq_length=input_meta_data['max_seq_length'],
      doc_stride=doc_stride,
      max_query_length=max_query_length,
      is_training=False,
      output_fn=_append_feature,
      batch_size=FLAGS.predict_batch_size)

  # squad_lib_sp requires one more argument 'do_lower_case'.
  if squad_lib == squad_lib_sp:
    kwargs['do_lower_case'] = FLAGS.do_lower_case
  dataset_size = squad_lib.convert_examples_to_features(**kwargs)
  eval_writer.close()

  logging.info('***** Running predictions *****')
  logging.info('  Num orig examples = %d', len(eval_examples))
  logging.info('  Num split examples = %d', len(eval_features))
  logging.info('  Batch size = %d', FLAGS.predict_batch_size)

  num_steps = int(dataset_size / FLAGS.predict_batch_size)
  all_results = predict_squad_customized(strategy, input_meta_data, bert_config,
                                         eval_writer.filename, num_steps)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
  all_predictions, all_nbest_json, scores_diff_json = (
      squad_lib.postprocess_output(
          eval_examples,
          eval_features,
          all_results,
          FLAGS.n_best_size,
          FLAGS.max_answer_length,
          FLAGS.do_lower_case,
          version_2_with_negative=version_2_with_negative,
          null_score_diff_threshold=FLAGS.null_score_diff_threshold,
          verbose=FLAGS.verbose_logging))

  return all_predictions, all_nbest_json, scores_diff_json


def dump_to_files(all_predictions, all_nbest_json, scores_diff_json,
                  squad_lib, version_2_with_negative):
  """Save output to json files."""
Chen Chen's avatar
Chen Chen committed
351
352
353
  output_prediction_file = os.path.join(FLAGS.model_dir, 'predictions.json')
  output_nbest_file = os.path.join(FLAGS.model_dir, 'nbest_predictions.json')
  output_null_log_odds_file = os.path.join(FLAGS.model_dir, 'null_odds.json')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
354
355
  logging.info('Writing predictions to: %s', (output_prediction_file))
  logging.info('Writing nbest to: %s', (output_nbest_file))
Chen Chen's avatar
Chen Chen committed
356

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
  squad_lib.write_to_json_files(all_predictions, output_prediction_file)
  squad_lib.write_to_json_files(all_nbest_json, output_nbest_file)
  if version_2_with_negative:
    squad_lib.write_to_json_files(scores_diff_json, output_null_log_odds_file)


def predict_squad(strategy, input_meta_data, tokenizer, bert_config, squad_lib):
  """Get prediction results and evaluate them to hard drive."""
  all_predictions, all_nbest_json, scores_diff_json = prediction_output_squad(
      strategy, input_meta_data, tokenizer, bert_config, squad_lib)
  dump_to_files(all_predictions, all_nbest_json, scores_diff_json, squad_lib,
                input_meta_data.get('version_2_with_negative', False))


def eval_squad(strategy, input_meta_data, tokenizer, bert_config, squad_lib):
  """Get prediction results and evaluate them against ground truth."""
  all_predictions, all_nbest_json, scores_diff_json = prediction_output_squad(
      strategy, input_meta_data, tokenizer, bert_config, squad_lib)
  dump_to_files(all_predictions, all_nbest_json, scores_diff_json, squad_lib,
                input_meta_data.get('version_2_with_negative', False))

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
378
379
380
  with tf.io.gfile.GFile(FLAGS.predict_file, 'r') as reader:
    dataset_json = json.load(reader)
    pred_dataset = dataset_json['data']
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
381
  if input_meta_data.get('version_2_with_negative', False):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
382
383
384
    eval_metrics = squad_evaluate_v2_0.evaluate(pred_dataset,
                                                all_predictions,
                                                scores_diff_json)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
385
386
  else:
    eval_metrics = squad_evaluate_v1_1.evaluate(pred_dataset, all_predictions)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
387
  return eval_metrics
Chen Chen's avatar
Chen Chen committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408


def export_squad(model_export_path, input_meta_data, bert_config):
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.
    bert_config: Bert configuration file to define core bert layers.

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
  # Export uses float32 for now, even if training uses mixed precision.
  tf.keras.mixed_precision.experimental.set_policy('float32')
  squad_model, _ = bert_models.squad_model(bert_config,
                                           input_meta_data['max_seq_length'])
  model_saving_utils.export_bert_model(
      model_export_path, model=squad_model, checkpoint_dir=FLAGS.model_dir)