trust_region.py 5.54 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Trust region optimization.

A lot of this is adapted from other's code.
See Schulman's Modular RL, wojzaremba's TRPO, etc.

"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

27
from six.moves import xrange
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import tensorflow as tf
import numpy as np


def var_size(v):
  return int(np.prod([int(d) for d in v.shape]))


def gradients(loss, var_list):
  grads = tf.gradients(loss, var_list)
  return [g if g is not None else tf.zeros(v.shape)
          for g, v in zip(grads, var_list)]

def flatgrad(loss, var_list):
  grads = gradients(loss, var_list)
  return tf.concat([tf.reshape(grad, [-1])
                    for (v, grad) in zip(var_list, grads)
                    if grad is not None], 0)


def get_flat(var_list):
  return tf.concat([tf.reshape(v, [-1]) for v in var_list], 0)


def set_from_flat(var_list, flat_theta):
  assigns = []
  shapes = [v.shape for v in var_list]
  sizes = [var_size(v) for v in var_list]

  start = 0
  assigns = []
  for (shape, size, v) in zip(shapes, sizes, var_list):
    assigns.append(v.assign(
        tf.reshape(flat_theta[start:start + size], shape)))
    start += size
  assert start == sum(sizes)

  return tf.group(*assigns)


class TrustRegionOptimization(object):

  def __init__(self, max_divergence=0.1, cg_damping=0.1):
    self.max_divergence = max_divergence
    self.cg_damping = cg_damping

  def setup_placeholders(self):
    self.flat_tangent = tf.placeholder(tf.float32, [None], 'flat_tangent')
    self.flat_theta = tf.placeholder(tf.float32, [None], 'flat_theta')

  def setup(self, var_list, raw_loss, self_divergence,
            divergence=None):
    self.setup_placeholders()

    self.raw_loss = raw_loss
    self.divergence = divergence
    self.loss_flat_gradient = flatgrad(raw_loss, var_list)
    self.divergence_gradient = gradients(self_divergence, var_list)

    shapes = [var.shape for var in var_list]
    sizes = [var_size(var) for var in var_list]

    start = 0
    tangents = []
    for shape, size in zip(shapes, sizes):
      param = tf.reshape(self.flat_tangent[start:start + size], shape)
      tangents.append(param)
      start += size
    assert start == sum(sizes)

    self.grad_vector_product = sum(
        tf.reduce_sum(g * t) for (g, t) in zip(self.divergence_gradient, tangents))
    self.fisher_vector_product = flatgrad(self.grad_vector_product, var_list)

    self.flat_vars = get_flat(var_list)
    self.set_vars = set_from_flat(var_list, self.flat_theta)

  def optimize(self, sess, feed_dict):
    old_theta = sess.run(self.flat_vars)
    loss_flat_grad = sess.run(self.loss_flat_gradient,
                              feed_dict=feed_dict)

    def calc_fisher_vector_product(tangent):
      feed_dict[self.flat_tangent] = tangent
      fvp = sess.run(self.fisher_vector_product,
                     feed_dict=feed_dict)
      fvp += self.cg_damping * tangent
      return fvp

    step_dir = conjugate_gradient(calc_fisher_vector_product, -loss_flat_grad)

    shs = 0.5 * step_dir.dot(calc_fisher_vector_product(step_dir))
    lm = np.sqrt(shs / self.max_divergence)
    fullstep = step_dir / lm
    neggdotstepdir = -loss_flat_grad.dot(step_dir)

    def calc_loss(theta):
      sess.run(self.set_vars, feed_dict={self.flat_theta: theta})
      if self.divergence is None:
        return sess.run(self.raw_loss, feed_dict=feed_dict), True
      else:
        raw_loss, divergence = sess.run(
            [self.raw_loss, self.divergence], feed_dict=feed_dict)
        return raw_loss, divergence < self.max_divergence

    # find optimal theta
    theta = linesearch(calc_loss, old_theta, fullstep, neggdotstepdir / lm)
    if self.divergence is not None:
      final_divergence = sess.run(self.divergence, feed_dict=feed_dict)
    else:
      final_divergence = None

    # set vars accordingly
    if final_divergence is None or final_divergence < self.max_divergence:
      sess.run(self.set_vars, feed_dict={self.flat_theta: theta})
    else:
      sess.run(self.set_vars, feed_dict={self.flat_theta: old_theta})


def conjugate_gradient(f_Ax, b, cg_iters=10, residual_tol=1e-10):
  p = b.copy()
  r = b.copy()
  x = np.zeros_like(b)
  rdotr = r.dot(r)
  for i in xrange(cg_iters):
    z = f_Ax(p)
    v = rdotr / p.dot(z)
    x += v * p
    r -= v * z
    newrdotr = r.dot(r)
    mu = newrdotr / rdotr
    p = r + mu * p
    rdotr = newrdotr
    if rdotr < residual_tol:
      break
  return x


def linesearch(f, x, fullstep, expected_improve_rate):
  accept_ratio = 0.1
  max_backtracks = 10

  fval, _ = f(x)
  for (_n_backtracks, stepfrac) in enumerate(.5 ** np.arange(max_backtracks)):
    xnew = x + stepfrac * fullstep
    newfval, valid = f(xnew)
    if not valid:
      continue
    actual_improve = fval - newfval
    expected_improve = expected_improve_rate * stepfrac
    ratio = actual_improve / expected_improve
    if ratio > accept_ratio and actual_improve > 0:
      return xnew

  return x