gym_wrapper.py 3.44 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Wrapper around gym env.

Allows for using batches of possibly identitically seeded environments.
"""

import gym
import numpy as np
import random

25
from six.moves import xrange
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import env_spec


def get_env(env_str):
  return gym.make(env_str)


class GymWrapper(object):

  def __init__(self, env_str, distinct=1, count=1, seeds=None):
    self.distinct = distinct
    self.count = count
    self.total = self.distinct * self.count
    self.seeds = seeds or [random.randint(0, 1e12)
                           for _ in xrange(self.distinct)]

    self.envs = []
    for seed in self.seeds:
      for _ in xrange(self.count):
        env = get_env(env_str)
        env.seed(seed)
        if hasattr(env, 'last'):
          env.last = 100  # for algorithmic envs
        self.envs.append(env)

    self.dones = [True] * self.total
    self.num_episodes_played = 0

    one_env = self.get_one()
    self.use_action_list = hasattr(one_env.action_space, 'spaces')
    self.env_spec = env_spec.EnvSpec(self.get_one())

  def get_seeds(self):
    return self.seeds

  def reset(self):
    self.dones = [False] * self.total
    self.num_episodes_played += len(self.envs)

    # reset seeds to be synchronized
    self.seeds = [random.randint(0, 1e12) for _ in xrange(self.distinct)]
    counter = 0
    for seed in self.seeds:
      for _ in xrange(self.count):
        self.envs[counter].seed(seed)
        counter += 1

    return [self.env_spec.convert_obs_to_list(env.reset())
            for env in self.envs]

  def reset_if(self, predicate=None):
    if predicate is None:
      predicate = self.dones
    if self.count != 1:
      assert np.all(predicate)
      return self.reset()
    self.num_episodes_played += sum(predicate)
    output = [self.env_spec.convert_obs_to_list(env.reset())
              if pred else None
              for env, pred in zip(self.envs, predicate)]
    for i, pred in enumerate(predicate):
      if pred:
        self.dones[i] = False
    return output

  def all_done(self):
    return all(self.dones)

  def step(self, actions):

ashaw596's avatar
ashaw596 committed
96
    def env_step(env, action):
97
98
99
100
101
102
      action = self.env_spec.convert_action_to_gym(action)
      obs, reward, done, tt = env.step(action)
      obs = self.env_spec.convert_obs_to_list(obs)
      return obs, reward, done, tt

    actions = zip(*actions)
ashaw596's avatar
ashaw596 committed
103
    outputs = [env_step(env, action)
104
105
106
107
108
109
110
111
112
113
114
115
116
               if not done else (self.env_spec.initial_obs(None), 0, True, None)
               for action, env, done in zip(actions, self.envs, self.dones)]
    for i, (_, _, done, _) in enumerate(outputs):
      self.dones[i] = self.dones[i] or done
    obs, reward, done, tt = zip(*outputs)
    obs = [list(oo) for oo in zip(*obs)]
    return [obs, reward, done, tt]

  def get_one(self):
    return random.choice(self.envs)

  def __len__(self):
    return len(self.envs)