data_utils.py 15.8 KB
Newer Older
Martin Wicke's avatar
Martin Wicke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lukasz Kaiser's avatar
Lukasz Kaiser committed
15
"""Neural GPU -- data generation and batching utilities."""
Lukasz Kaiser's avatar
Lukasz Kaiser committed
16
17

import math
Lukasz Kaiser's avatar
Lukasz Kaiser committed
18
import os
Lukasz Kaiser's avatar
Lukasz Kaiser committed
19
20
21
22
23
import random
import sys
import time

import numpy as np
24
from six.moves import xrange
Lukasz Kaiser's avatar
Lukasz Kaiser committed
25
26
import tensorflow as tf

Lukasz Kaiser's avatar
Lukasz Kaiser committed
27
import program_utils
Lukasz Kaiser's avatar
Lukasz Kaiser committed
28
29
30

FLAGS = tf.app.flags.FLAGS

Lukasz Kaiser's avatar
Lukasz Kaiser committed
31
bins = [2 + bin_idx_i for bin_idx_i in xrange(256)]
32
33
all_tasks = ["sort", "kvsort", "id", "rev", "rev2", "incr", "add", "left",
             "right", "left-shift", "right-shift", "bmul", "mul", "dup",
Lukasz Kaiser's avatar
Lukasz Kaiser committed
34
             "badd", "qadd", "search", "progeval", "progsynth"]
Lukasz Kaiser's avatar
Lukasz Kaiser committed
35
log_filename = ""
Lukasz Kaiser's avatar
Lukasz Kaiser committed
36
vocab, rev_vocab = None, None
Lukasz Kaiser's avatar
Lukasz Kaiser committed
37
38
39
40
41


def pad(l):
  for b in bins:
    if b >= l: return b
Lukasz Kaiser's avatar
Lukasz Kaiser committed
42
43
44
45
46
47
48
  return bins[-1]


def bin_for(l):
  for i, b in enumerate(bins):
    if b >= l: return i
  return len(bins) - 1
Lukasz Kaiser's avatar
Lukasz Kaiser committed
49
50
51
52
53
54
55
56
57
58
59
60


train_set = {}
test_set = {}
for some_task in all_tasks:
  train_set[some_task] = []
  test_set[some_task] = []
  for all_max_len in xrange(10000):
    train_set[some_task].append([])
    test_set[some_task].append([])


Lukasz Kaiser's avatar
Lukasz Kaiser committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def read_tmp_file(name):
  """Read from a file with the given name in our log directory or above."""
  dirname = os.path.dirname(log_filename)
  fname = os.path.join(dirname, name + ".txt")
  if not tf.gfile.Exists(fname):
    print_out("== not found file: " + fname)
    fname = os.path.join(dirname, "../" + name + ".txt")
  if not tf.gfile.Exists(fname):
    print_out("== not found file: " + fname)
    fname = os.path.join(dirname, "../../" + name + ".txt")
  if not tf.gfile.Exists(fname):
    print_out("== not found file: " + fname)
    return None
  print_out("== found file: " + fname)
  res = []
  with tf.gfile.GFile(fname, mode="r") as f:
    for line in f:
      res.append(line.strip())
  return res


def write_tmp_file(name, lines):
  dirname = os.path.dirname(log_filename)
  fname = os.path.join(dirname, name + ".txt")
  with tf.gfile.GFile(fname, mode="w") as f:
    for line in lines:
      f.write(line + "\n")


Lukasz Kaiser's avatar
Lukasz Kaiser committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
def add(n1, n2, base=10):
  """Add two numbers represented as lower-endian digit lists."""
  k = max(len(n1), len(n2)) + 1
  d1 = n1 + [0 for _ in xrange(k - len(n1))]
  d2 = n2 + [0 for _ in xrange(k - len(n2))]
  res = []
  carry = 0
  for i in xrange(k):
    if d1[i] + d2[i] + carry < base:
      res.append(d1[i] + d2[i] + carry)
      carry = 0
    else:
      res.append(d1[i] + d2[i] + carry - base)
      carry = 1
  while res and res[-1] == 0:
    res = res[:-1]
  if res: return res
  return [0]


def init_data(task, length, nbr_cases, nclass):
  """Data initialization."""
  def rand_pair(l, task):
    """Random data pair for a task. Total length should be <= l."""
    k = (l-1)/2
    base = 10
    if task[0] == "b": base = 2
    if task[0] == "q": base = 4
    d1 = [np.random.randint(base) for _ in xrange(k)]
    d2 = [np.random.randint(base) for _ in xrange(k)]
    if task in ["add", "badd", "qadd"]:
      res = add(d1, d2, base)
122
    elif task in ["mul", "bmul"]:
Lukasz Kaiser's avatar
Lukasz Kaiser committed
123
124
      d1n = sum([d * (base ** i) for i, d in enumerate(d1)])
      d2n = sum([d * (base ** i) for i, d in enumerate(d2)])
125
126
127
128
      if task == "bmul":
        res = [int(x) for x in list(reversed(str(bin(d1n * d2n))))[:-2]]
      else:
        res = [int(x) for x in list(reversed(str(d1n * d2n)))]
Lukasz Kaiser's avatar
Lukasz Kaiser committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    else:
      sys.exit()
    sep = [12]
    if task in ["add", "badd", "qadd"]: sep = [11]
    inp = [d + 1 for d in d1] + sep + [d + 1 for d in d2]
    return inp, [r + 1 for r in res]

  def rand_dup_pair(l):
    """Random data pair for duplication task. Total length should be <= l."""
    k = l/2
    x = [np.random.randint(nclass - 1) + 1 for _ in xrange(k)]
    inp = x + [0 for _ in xrange(l - k)]
    res = x + x + [0 for _ in xrange(l - 2*k)]
    return inp, res

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
  def rand_rev2_pair(l):
    """Random data pair for reverse2 task. Total length should be <= l."""
    inp = [(np.random.randint(nclass - 1) + 1,
            np.random.randint(nclass - 1) + 1) for _ in xrange(l/2)]
    res = [i for i in reversed(inp)]
    return [x for p in inp for x in p], [x for p in res for x in p]

  def rand_search_pair(l):
    """Random data pair for search task. Total length should be <= l."""
    inp = [(np.random.randint(nclass - 1) + 1,
            np.random.randint(nclass - 1) + 1) for _ in xrange(l-1/2)]
    q = np.random.randint(nclass - 1) + 1
    res = 0
    for (k, v) in reversed(inp):
      if k == q:
        res = v
    return [x for p in inp for x in p] + [q], [res]

  def rand_kvsort_pair(l):
    """Random data pair for key-value sort. Total length should be <= l."""
    keys = [(np.random.randint(nclass - 1) + 1, i) for i in xrange(l/2)]
    vals = [np.random.randint(nclass - 1) + 1 for _ in xrange(l/2)]
    kv = [(k, vals[i]) for (k, i) in keys]
    sorted_kv = [(k, vals[i]) for (k, i) in sorted(keys)]
    return [x for p in kv for x in p], [x for p in sorted_kv for x in p]

Lukasz Kaiser's avatar
Lukasz Kaiser committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
  def prog_io_pair(prog, max_len, counter=0):
    try:
      ilen = np.random.randint(max_len - 3) + 1
      bound = max(15 - (counter / 20), 1)
      inp = [random.choice(range(-bound, bound)) for _ in range(ilen)]
      inp_toks = [program_utils.prog_rev_vocab[t]
                  for t in program_utils.tokenize(str(inp)) if t != ","]
      out = program_utils.evaluate(prog, {"a": inp})
      out_toks = [program_utils.prog_rev_vocab[t]
                  for t in program_utils.tokenize(str(out)) if t != ","]
      if counter > 400:
        out_toks = []
      if (out_toks and out_toks[0] == program_utils.prog_rev_vocab["["] and
          len(out_toks) != len([o for o in out if o == ","]) + 3):
        raise ValueError("generated list with too long ints")
      if (out_toks and out_toks[0] != program_utils.prog_rev_vocab["["] and
          len(out_toks) > 1):
        raise ValueError("generated one int but tokenized it to many")
      if len(out_toks) > max_len:
        raise ValueError("output too long")
      return (inp_toks, out_toks)
    except ValueError:
      return prog_io_pair(prog, max_len, counter+1)

Lukasz Kaiser's avatar
Lukasz Kaiser committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
  def spec(inp):
    """Return the target given the input for some tasks."""
    if task == "sort":
      return sorted(inp)
    elif task == "id":
      return inp
    elif task == "rev":
      return [i for i in reversed(inp)]
    elif task == "incr":
      carry = 1
      res = []
      for i in xrange(len(inp)):
        if inp[i] + carry < nclass:
          res.append(inp[i] + carry)
          carry = 0
        else:
          res.append(1)
          carry = 1
      return res
    elif task == "left":
      return [inp[0]]
    elif task == "right":
      return [inp[-1]]
    elif task == "left-shift":
      return [inp[l-1] for l in xrange(len(inp))]
    elif task == "right-shift":
      return [inp[l+1] for l in xrange(len(inp))]
    else:
      print_out("Unknown spec for task " + str(task))
      sys.exit()

  l = length
  cur_time = time.time()
  total_time = 0.0
Lukasz Kaiser's avatar
Lukasz Kaiser committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

  is_prog = task in ["progeval", "progsynth"]
  if is_prog:
    inputs_per_prog = 5
    program_utils.make_vocab()
    progs = read_tmp_file("programs_len%d" % (l / 10))
    if not progs:
      progs = program_utils.gen(l / 10, 1.2 * nbr_cases / inputs_per_prog)
      write_tmp_file("programs_len%d" % (l / 10), progs)
    prog_ios = read_tmp_file("programs_len%d_io" % (l / 10))
    nbr_cases = min(nbr_cases, len(progs) * inputs_per_prog) / 1.2
    if not prog_ios:
      # Generate program io data.
      prog_ios = []
      for pidx, prog in enumerate(progs):
        if pidx % 500 == 0:
          print_out("== generating io pairs for program %d" % pidx)
        if pidx * inputs_per_prog > nbr_cases * 1.2:
          break
        ptoks = [program_utils.prog_rev_vocab[t]
                 for t in program_utils.tokenize(prog)]
        ptoks.append(program_utils.prog_rev_vocab["_EOS"])
        plen = len(ptoks)
        for _ in xrange(inputs_per_prog):
          if task == "progeval":
            inp, out = prog_io_pair(prog, plen)
            prog_ios.append(str(inp) + "\t" + str(out) + "\t" + prog)
          elif task == "progsynth":
            plen = max(len(ptoks), 8)
            for _ in xrange(3):
              inp, out = prog_io_pair(prog, plen / 2)
              prog_ios.append(str(inp) + "\t" + str(out) + "\t" + prog)
      write_tmp_file("programs_len%d_io" % (l / 10), prog_ios)
    prog_ios_dict = {}
    for s in prog_ios:
      i, o, p = s.split("\t")
      i_clean = "".join([c for c in i if c.isdigit() or c == " "])
      o_clean = "".join([c for c in o if c.isdigit() or c == " "])
      inp = [int(x) for x in i_clean.split()]
      out = [int(x) for x in o_clean.split()]
      if inp and out:
        if p in prog_ios_dict:
          prog_ios_dict[p].append([inp, out])
        else:
          prog_ios_dict[p] = [[inp, out]]
    # Use prog_ios_dict to create data.
    progs = []
    for prog in prog_ios_dict:
      if len([c for c in prog if c == ";"]) <= (l / 10):
        progs.append(prog)
    nbr_cases = min(nbr_cases, len(progs) * inputs_per_prog) / 1.2
    print_out("== %d training cases on %d progs" % (nbr_cases, len(progs)))
    for pidx, prog in enumerate(progs):
      if pidx * inputs_per_prog > nbr_cases * 1.2:
        break
      ptoks = [program_utils.prog_rev_vocab[t]
               for t in program_utils.tokenize(prog)]
      ptoks.append(program_utils.prog_rev_vocab["_EOS"])
      plen = len(ptoks)
      dset = train_set if pidx < nbr_cases / inputs_per_prog else test_set
      for _ in xrange(inputs_per_prog):
        if task == "progeval":
          inp, out = prog_ios_dict[prog].pop()
          dset[task][bin_for(plen)].append([[ptoks, inp, [], []], [out]])
        elif task == "progsynth":
          plen, ilist = max(len(ptoks), 8), [[]]
          for _ in xrange(3):
            inp, out = prog_ios_dict[prog].pop()
            ilist.append(inp + out)
          dset[task][bin_for(plen)].append([ilist, [ptoks]])

  for case in xrange(0 if is_prog else nbr_cases):
Lukasz Kaiser's avatar
Lukasz Kaiser committed
300
301
302
303
    total_time += time.time() - cur_time
    cur_time = time.time()
    if l > 10000 and case % 100 == 1:
      print_out("  avg gen time %.4f s" % (total_time / float(case)))
304
    if task in ["add", "badd", "qadd", "bmul", "mul"]:
Lukasz Kaiser's avatar
Lukasz Kaiser committed
305
      i, t = rand_pair(l, task)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
306
      train_set[task][bin_for(len(i))].append([[[], i, [], []], [t]])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
307
      i, t = rand_pair(l, task)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
308
      test_set[task][bin_for(len(i))].append([[[], i, [], []], [t]])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
309
310
    elif task == "dup":
      i, t = rand_dup_pair(l)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
311
      train_set[task][bin_for(len(i))].append([[i], [t]])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
312
      i, t = rand_dup_pair(l)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
313
      test_set[task][bin_for(len(i))].append([[i], [t]])
314
315
    elif task == "rev2":
      i, t = rand_rev2_pair(l)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
316
      train_set[task][bin_for(len(i))].append([[i], [t]])
317
      i, t = rand_rev2_pair(l)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
318
      test_set[task][bin_for(len(i))].append([[i], [t]])
319
320
    elif task == "search":
      i, t = rand_search_pair(l)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
321
      train_set[task][bin_for(len(i))].append([[i], [t]])
322
      i, t = rand_search_pair(l)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
323
      test_set[task][bin_for(len(i))].append([[i], [t]])
324
325
    elif task == "kvsort":
      i, t = rand_kvsort_pair(l)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
326
      train_set[task][bin_for(len(i))].append([[i], [t]])
327
      i, t = rand_kvsort_pair(l)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
328
329
      test_set[task][bin_for(len(i))].append([[i], [t]])
    elif task not in ["progeval", "progsynth"]:
Lukasz Kaiser's avatar
Lukasz Kaiser committed
330
331
      inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
      target = spec(inp)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
332
      train_set[task][bin_for(l)].append([[inp], [target]])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
333
334
      inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
      target = spec(inp)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
335
      test_set[task][bin_for(l)].append([[inp], [target]])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
336
337


338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
def to_symbol(i):
  """Covert ids to text."""
  if i == 0: return ""
  if i == 11: return "+"
  if i == 12: return "*"
  return str(i-1)


def to_id(s):
  """Covert text to ids."""
  if s == "+": return 11
  if s == "*": return 12
  return int(s) + 1


Lukasz Kaiser's avatar
Lukasz Kaiser committed
353
def get_batch(bin_id, batch_size, data_set, height, offset=None, preset=None):
Lukasz Kaiser's avatar
Lukasz Kaiser committed
354
  """Get a batch of data, training or testing."""
Lukasz Kaiser's avatar
Lukasz Kaiser committed
355
356
  inputs, targets = [], []
  pad_length = bins[bin_id]
Lukasz Kaiser's avatar
Lukasz Kaiser committed
357
358
  for b in xrange(batch_size):
    if preset is None:
Lukasz Kaiser's avatar
Lukasz Kaiser committed
359
360
361
      elem = random.choice(data_set[bin_id])
      if offset is not None and offset + b < len(data_set[bin_id]):
        elem = data_set[bin_id][offset + b]
Lukasz Kaiser's avatar
Lukasz Kaiser committed
362
363
    else:
      elem = preset
Lukasz Kaiser's avatar
Lukasz Kaiser committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    inpt, targett, inpl, targetl = elem[0], elem[1], [], []
    for inp in inpt:
      inpl.append(inp + [0 for _ in xrange(pad_length - len(inp))])
    if len(inpl) == 1:
      for _ in xrange(height - 1):
        inpl.append([0 for _ in xrange(pad_length)])
    for target in targett:
      targetl.append(target + [0 for _ in xrange(pad_length - len(target))])
    inputs.append(inpl)
    targets.append(targetl)
  res_input = np.array(inputs, dtype=np.int32)
  res_target = np.array(targets, dtype=np.int32)
  assert list(res_input.shape) == [batch_size, height, pad_length]
  assert list(res_target.shape) == [batch_size, 1, pad_length]
Lukasz Kaiser's avatar
Lukasz Kaiser committed
378
379
380
381
382
383
384
  return res_input, res_target


def print_out(s, newline=True):
  """Print a message out and log it to file."""
  if log_filename:
    try:
Lukasz Kaiser's avatar
Lukasz Kaiser committed
385
      with tf.gfile.GFile(log_filename, mode="a") as f:
Lukasz Kaiser's avatar
Lukasz Kaiser committed
386
387
388
        f.write(s + ("\n" if newline else ""))
    # pylint: disable=bare-except
    except:
Lukasz Kaiser's avatar
Lukasz Kaiser committed
389
      sys.stderr.write("Error appending to %s\n" % log_filename)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
390
391
392
393
394
395
396
397
  sys.stdout.write(s + ("\n" if newline else ""))
  sys.stdout.flush()


def decode(output):
  return [np.argmax(o, axis=1) for o in output]


Lukasz Kaiser's avatar
Lukasz Kaiser committed
398
399
def accuracy(inpt_t, output, target_t, batch_size, nprint,
             beam_out=None, beam_scores=None):
Lukasz Kaiser's avatar
Lukasz Kaiser committed
400
401
  """Calculate output accuracy given target."""
  assert nprint < batch_size + 1
Lukasz Kaiser's avatar
Lukasz Kaiser committed
402
403
404
405
406
407
408
409
  inpt = []
  for h in xrange(inpt_t.shape[1]):
    inpt.extend([inpt_t[:, h, l] for l in xrange(inpt_t.shape[2])])
  target = [target_t[:, 0, l] for l in xrange(target_t.shape[2])]
  def tok(i):
    if rev_vocab and i < len(rev_vocab):
      return rev_vocab[i]
    return str(i - 1)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
410
411
412
413
414
  def task_print(inp, output, target):
    stop_bound = 0
    print_len = 0
    while print_len < len(target) and target[print_len] > stop_bound:
      print_len += 1
Lukasz Kaiser's avatar
Lukasz Kaiser committed
415
    print_out("    i: " + " ".join([tok(i) for i in inp if i > 0]))
Lukasz Kaiser's avatar
Lukasz Kaiser committed
416
    print_out("    o: " +
Lukasz Kaiser's avatar
Lukasz Kaiser committed
417
              " ".join([tok(output[l]) for l in xrange(print_len)]))
Lukasz Kaiser's avatar
Lukasz Kaiser committed
418
    print_out("    t: " +
Lukasz Kaiser's avatar
Lukasz Kaiser committed
419
              " ".join([tok(target[l]) for l in xrange(print_len)]))
Lukasz Kaiser's avatar
Lukasz Kaiser committed
420
421
  decoded_target = target
  decoded_output = decode(output)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
422
423
424
425
426
427
  # Use beam output if given and score is high enough.
  if beam_out is not None:
    for b in xrange(batch_size):
      if beam_scores[b] >= 10.0:
        for l in xrange(min(len(decoded_output), beam_out.shape[2])):
          decoded_output[l][b] = int(beam_out[b, 0, l])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
  total = 0
  errors = 0
  seq = [0 for b in xrange(batch_size)]
  for l in xrange(len(decoded_output)):
    for b in xrange(batch_size):
      if decoded_target[l][b] > 0:
        total += 1
        if decoded_output[l][b] != decoded_target[l][b]:
          seq[b] = 1
          errors += 1
  e = 0  # Previous error index
  for _ in xrange(min(nprint, sum(seq))):
    while seq[e] == 0:
      e += 1
    task_print([inpt[l][e] for l in xrange(len(inpt))],
               [decoded_output[l][e] for l in xrange(len(decoded_target))],
               [decoded_target[l][e] for l in xrange(len(decoded_target))])
    e += 1
  for b in xrange(nprint - errors):
    task_print([inpt[l][b] for l in xrange(len(inpt))],
               [decoded_output[l][b] for l in xrange(len(decoded_target))],
               [decoded_target[l][b] for l in xrange(len(decoded_target))])
  return errors, total, sum(seq)


def safe_exp(x):
  perp = 10000
Lukasz Kaiser's avatar
Lukasz Kaiser committed
455
  x = float(x)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
456
457
458
  if x < 100: perp = math.exp(x)
  if perp > 10000: return 10000
  return perp