"host/online_compile/include/hipCheck.hpp" did not exist on "d2315b0dfcd6f31cca4328819eaf60d77e952dd6"
README.md 4.57 KB
Newer Older
Ryan Sepassi's avatar
Ryan Sepassi committed
1
2
# Adversarial Text Classification

3
Code for [*Adversarial Training Methods for Semi-Supervised Text Classification*](https://arxiv.org/abs/1605.07725) and [*Semi-Supervised Sequence Learning*](https://arxiv.org/abs/1511.01432).
Ryan Sepassi's avatar
Ryan Sepassi committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

## Requirements

* TensorFlow >= v1.1

## End-to-end IMDB Sentiment Classification

### Fetch data

```
$ wget http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz \
    -O /tmp/imdb.tar.gz
$ tar -xf /tmp/imdb.tar.gz -C /tmp
```

The directory `/tmp/aclImdb` contains the raw IMDB data.

### Generate vocabulary

```
$ IMDB_DATA_DIR=/tmp/imdb
25
$ python gen_vocab.py -- \
Ryan Sepassi's avatar
Ryan Sepassi committed
26
27
28
29
30
31
32
33
34
35
36
    --output_dir=$IMDB_DATA_DIR \
    --dataset=imdb \
    --imdb_input_dir=/tmp/aclImdb \
    --lowercase=False
```

Vocabulary and frequency files will be generated in `$IMDB_DATA_DIR`.

###  Generate training, validation, and test data

```
37
$ python gen_data.py -- \
Ryan Sepassi's avatar
Ryan Sepassi committed
38
39
40
41
42
43
44
45
46
47
48
49
50
    --output_dir=$IMDB_DATA_DIR \
    --dataset=imdb \
    --imdb_input_dir=/tmp/aclImdb \
    --lowercase=False \
    --label_gain=False
```

`$IMDB_DATA_DIR` contains TFRecords files.

### Pretrain IMDB Language Model

```
$ PRETRAIN_DIR=/tmp/models/imdb_pretrain
51
$ python pretrain.py -- \
Ryan Sepassi's avatar
Ryan Sepassi committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    --train_dir=$PRETRAIN_DIR \
    --data_dir=$IMDB_DATA_DIR \
    --vocab_size=86934 \
    --embedding_dims=256 \
    --rnn_cell_size=1024 \
    --num_candidate_samples=1024 \
    --batch_size=256 \
    --learning_rate=0.001 \
    --learning_rate_decay_factor=0.9999 \
    --max_steps=100000 \
    --max_grad_norm=1.0 \
    --num_timesteps=400 \
    --keep_prob_emb=0.5 \
    --normalize_embeddings
```

`$PRETRAIN_DIR` contains checkpoints of the pretrained language model.

### Train classifier

Most flags stay the same, save for the removal of candidate sampling and the
addition of `pretrained_model_dir`, from which the classifier will load the
pretrained embedding and LSTM variables, and flags related to adversarial
training and classification.

```
$ TRAIN_DIR=/tmp/models/imdb_classify
79
$ python train_classifier.py -- \
Ryan Sepassi's avatar
Ryan Sepassi committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    --train_dir=$TRAIN_DIR \
    --pretrained_model_dir=$PRETRAIN_DIR \
    --data_dir=$IMDB_DATA_DIR \
    --vocab_size=86934 \
    --embedding_dims=256 \
    --rnn_cell_size=1024 \
    --cl_num_layers=1 \
    --cl_hidden_size=30 \
    --batch_size=64 \
    --learning_rate=0.0005 \
    --learning_rate_decay_factor=0.9998 \
    --max_steps=15000 \
    --max_grad_norm=1.0 \
    --num_timesteps=400 \
    --keep_prob_emb=0.5 \
    --normalize_embeddings \
96
97
    --adv_training_method=vat \
    --perturb_norm_length=5.0
Ryan Sepassi's avatar
Ryan Sepassi committed
98
99
100
101
102
103
```

### Evaluate on test data

```
$ EVAL_DIR=/tmp/models/imdb_eval
104
$ python evaluate.py -- \
Ryan Sepassi's avatar
Ryan Sepassi committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    --eval_dir=$EVAL_DIR \
    --checkpoint_dir=$TRAIN_DIR \
    --eval_data=test \
    --run_once \
    --num_examples=25000 \
    --data_dir=$IMDB_DATA_DIR \
    --vocab_size=86934 \
    --embedding_dims=256 \
    --rnn_cell_size=1024 \
    --batch_size=256 \
    --num_timesteps=400 \
    --normalize_embeddings
```

## Code Overview

The main entry points are the binaries listed below. Each training binary builds
a `VatxtModel`, defined in `graphs.py`, which in turn uses graph building blocks
defined in `inputs.py` (defines input data reading and parsing), `layers.py`
(defines core model components), and `adversarial_losses.py` (defines
adversarial training losses). The training loop itself is defined in
`train_utils.py`.

### Binaries

*   Pretraining: `pretrain.py`
*   Classifier Training: `train_classifier.py`
*   Evaluation: `evaluate.py`

### Command-Line Flags

Flags related to distributed training and the training loop itself are defined
137
in [`train_utils.py`](https://github.com/tensorflow/models/tree/master/research/adversarial_text/train_utils.py).
Ryan Sepassi's avatar
Ryan Sepassi committed
138

139
Flags related to model hyperparameters are defined in [`graphs.py`](https://github.com/tensorflow/models/tree/master/research/adversarial_text/graphs.py).
Ryan Sepassi's avatar
Ryan Sepassi committed
140

141
Flags related to adversarial training are defined in [`adversarial_losses.py`](https://github.com/tensorflow/models/tree/master/research/adversarial_text/adversarial_losses.py).
Ryan Sepassi's avatar
Ryan Sepassi committed
142
143
144
145
146

Flags particular to each job are defined in the main binary files.

### Data Generation

147
148
*   Vocabulary generation: [`gen_vocab.py`](https://github.com/tensorflow/models/tree/master/research/adversarial_text/gen_vocab.py)
*   Data generation: [`gen_data.py`](https://github.com/tensorflow/models/tree/master/research/adversarial_text/gen_data.py)
Ryan Sepassi's avatar
Ryan Sepassi committed
149

150
Command-line flags defined in [`document_generators.py`](https://github.com/tensorflow/models/tree/master/research/adversarial_text/data/document_generators.py)
151
control which dataset is processed and how.
Ryan Sepassi's avatar
Ryan Sepassi committed
152
153
154
155

## Contact for Issues

* Ryan Sepassi, @rsepassi
156
* Andrew M. Dai, @a-dai <adai@google.com>