data_utils.py 7.96 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#==============================================================================

Lukasz Kaiser's avatar
Lukasz Kaiser committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""Convolutional Gated Recurrent Networks for Algorithm Learning."""

import math
import random
import sys
import time

import google3

import numpy as np
import tensorflow as tf

from google3.third_party.tensorflow.python.platform import gfile

FLAGS = tf.app.flags.FLAGS

bins = [8, 16, 32, 64, 128]
all_tasks = ["sort", "id", "rev", "incr", "left", "right", "left-shift", "add",
             "right-shift", "bmul", "dup", "badd", "qadd"]
forward_max = 128
log_filename = ""


def pad(l):
  for b in bins:
    if b >= l: return b
  return forward_max


train_set = {}
test_set = {}
for some_task in all_tasks:
  train_set[some_task] = []
  test_set[some_task] = []
  for all_max_len in xrange(10000):
    train_set[some_task].append([])
    test_set[some_task].append([])


def add(n1, n2, base=10):
  """Add two numbers represented as lower-endian digit lists."""
  k = max(len(n1), len(n2)) + 1
  d1 = n1 + [0 for _ in xrange(k - len(n1))]
  d2 = n2 + [0 for _ in xrange(k - len(n2))]
  res = []
  carry = 0
  for i in xrange(k):
    if d1[i] + d2[i] + carry < base:
      res.append(d1[i] + d2[i] + carry)
      carry = 0
    else:
      res.append(d1[i] + d2[i] + carry - base)
      carry = 1
  while res and res[-1] == 0:
    res = res[:-1]
  if res: return res
  return [0]


def init_data(task, length, nbr_cases, nclass):
  """Data initialization."""
  def rand_pair(l, task):
    """Random data pair for a task. Total length should be <= l."""
    k = (l-1)/2
    base = 10
    if task[0] == "b": base = 2
    if task[0] == "q": base = 4
    d1 = [np.random.randint(base) for _ in xrange(k)]
    d2 = [np.random.randint(base) for _ in xrange(k)]
    if task in ["add", "badd", "qadd"]:
      res = add(d1, d2, base)
    elif task in ["bmul"]:
      d1n = sum([d * (base ** i) for i, d in enumerate(d1)])
      d2n = sum([d * (base ** i) for i, d in enumerate(d2)])
      res = [int(x) for x in list(reversed(str(bin(d1n * d2n))))[:-2]]
    else:
      sys.exit()
    sep = [12]
    if task in ["add", "badd", "qadd"]: sep = [11]
    inp = [d + 1 for d in d1] + sep + [d + 1 for d in d2]
    return inp, [r + 1 for r in res]

  def rand_dup_pair(l):
    """Random data pair for duplication task. Total length should be <= l."""
    k = l/2
    x = [np.random.randint(nclass - 1) + 1 for _ in xrange(k)]
    inp = x + [0 for _ in xrange(l - k)]
    res = x + x + [0 for _ in xrange(l - 2*k)]
    return inp, res

  def spec(inp):
    """Return the target given the input for some tasks."""
    if task == "sort":
      return sorted(inp)
    elif task == "id":
      return inp
    elif task == "rev":
      return [i for i in reversed(inp)]
    elif task == "incr":
      carry = 1
      res = []
      for i in xrange(len(inp)):
        if inp[i] + carry < nclass:
          res.append(inp[i] + carry)
          carry = 0
        else:
          res.append(1)
          carry = 1
      return res
    elif task == "left":
      return [inp[0]]
    elif task == "right":
      return [inp[-1]]
    elif task == "left-shift":
      return [inp[l-1] for l in xrange(len(inp))]
    elif task == "right-shift":
      return [inp[l+1] for l in xrange(len(inp))]
    else:
      print_out("Unknown spec for task " + str(task))
      sys.exit()

  l = length
  cur_time = time.time()
  total_time = 0.0
  for case in xrange(nbr_cases):
    total_time += time.time() - cur_time
    cur_time = time.time()
    if l > 10000 and case % 100 == 1:
      print_out("  avg gen time %.4f s" % (total_time / float(case)))
    if task in ["add", "badd", "qadd", "bmul"]:
      i, t = rand_pair(l, task)
      train_set[task][len(i)].append([i, t])
      i, t = rand_pair(l, task)
      test_set[task][len(i)].append([i, t])
    elif task == "dup":
      i, t = rand_dup_pair(l)
      train_set[task][len(i)].append([i, t])
      i, t = rand_dup_pair(l)
      test_set[task][len(i)].append([i, t])
    else:
      inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
      target = spec(inp)
      train_set[task][l].append([inp, target])
      inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
      target = spec(inp)
      test_set[task][l].append([inp, target])


def get_batch(max_length, batch_size, do_train, task, offset=None, preset=None):
  """Get a batch of data, training or testing."""
  inputs = []
  targets = []
  length = max_length
  if preset is None:
    cur_set = test_set[task]
    if do_train: cur_set = train_set[task]
    while not cur_set[length]:
      length -= 1
  pad_length = pad(length)
  for b in xrange(batch_size):
    if preset is None:
      elem = random.choice(cur_set[length])
      if offset is not None and offset + b < len(cur_set[length]):
        elem = cur_set[length][offset + b]
    else:
      elem = preset
    inp, target = elem[0], elem[1]
    assert len(inp) == length
    inputs.append(inp + [0 for l in xrange(pad_length - len(inp))])
    targets.append(target + [0 for l in xrange(pad_length - len(target))])
  res_input = []
  res_target = []
  for l in xrange(pad_length):
    new_input = np.array([inputs[b][l] for b in xrange(batch_size)],
                         dtype=np.int32)
    new_target = np.array([targets[b][l] for b in xrange(batch_size)],
                          dtype=np.int32)
    res_input.append(new_input)
    res_target.append(new_target)
  return res_input, res_target


def print_out(s, newline=True):
  """Print a message out and log it to file."""
  if log_filename:
    try:
      with gfile.GFile(log_filename, mode="a") as f:
        f.write(s + ("\n" if newline else ""))
    # pylint: disable=bare-except
    except:
      sys.stdout.write("Error appending to %s\n" % log_filename)
  sys.stdout.write(s + ("\n" if newline else ""))
  sys.stdout.flush()


def decode(output):
  return [np.argmax(o, axis=1) for o in output]


def accuracy(inpt, output, target, batch_size, nprint):
  """Calculate output accuracy given target."""
  assert nprint < batch_size + 1
  def task_print(inp, output, target):
    stop_bound = 0
    print_len = 0
    while print_len < len(target) and target[print_len] > stop_bound:
      print_len += 1
    print_out("    i: " + " ".join([str(i - 1) for i in inp if i > 0]))
    print_out("    o: " +
              " ".join([str(output[l] - 1) for l in xrange(print_len)]))
    print_out("    t: " +
              " ".join([str(target[l] - 1) for l in xrange(print_len)]))
  decoded_target = target
  decoded_output = decode(output)
  total = 0
  errors = 0
  seq = [0 for b in xrange(batch_size)]
  for l in xrange(len(decoded_output)):
    for b in xrange(batch_size):
      if decoded_target[l][b] > 0:
        total += 1
        if decoded_output[l][b] != decoded_target[l][b]:
          seq[b] = 1
          errors += 1
  e = 0  # Previous error index
  for _ in xrange(min(nprint, sum(seq))):
    while seq[e] == 0:
      e += 1
    task_print([inpt[l][e] for l in xrange(len(inpt))],
               [decoded_output[l][e] for l in xrange(len(decoded_target))],
               [decoded_target[l][e] for l in xrange(len(decoded_target))])
    e += 1
  for b in xrange(nprint - errors):
    task_print([inpt[l][b] for l in xrange(len(inpt))],
               [decoded_output[l][b] for l in xrange(len(decoded_target))],
               [decoded_target[l][b] for l in xrange(len(decoded_target))])
  return errors, total, sum(seq)


def safe_exp(x):
  perp = 10000
  if x < 100: perp = math.exp(x)
  if perp > 10000: return 10000
  return perp