metrics.py 16.3 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Katherine Wu's avatar
Katherine Wu committed
2
#
Frederick Liu's avatar
Frederick Liu committed
3
# Licensed under the Apache License, Version 2.0 (the "License");
Katherine Wu's avatar
Katherine Wu committed
4
5
6
7
8
9
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
Frederick Liu's avatar
Frederick Liu committed
10
# distributed under the License is distributed on an "AS IS" BASIS,
Katherine Wu's avatar
Katherine Wu committed
11
12
13
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

Katherine Wu's avatar
Katherine Wu committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
"""Functions for calculating loss, accuracy, and other model metrics.

Metrics:
 - Padded loss, accuracy, and negative log perplexity. Source:
     https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/metrics.py
 - BLEU approximation. Source:
     https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/bleu_hook.py
 - ROUGE score. Source:
     https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/rouge.py
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import math

import numpy as np
import six
from six.moves import xrange  # pylint: disable=redefined-builtin
36
import tensorflow.compat.v1 as tf
Katherine Wu's avatar
Katherine Wu committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


def _pad_tensors_to_same_length(x, y):
  """Pad x and y so that the results have the same length (second dimension)."""
  with tf.name_scope("pad_to_same_length"):
    x_length = tf.shape(x)[1]
    y_length = tf.shape(y)[1]

    max_length = tf.maximum(x_length, y_length)

    x = tf.pad(x, [[0, 0], [0, max_length - x_length], [0, 0]])
    y = tf.pad(y, [[0, 0], [0, max_length - y_length]])
    return x, y


def padded_cross_entropy_loss(logits, labels, smoothing, vocab_size):
  """Calculate cross entropy loss while ignoring padding.

  Args:
    logits: Tensor of size [batch_size, length_logits, vocab_size]
    labels: Tensor of size [batch_size, length_labels]
    smoothing: Label smoothing constant, used to determine the on and off values
    vocab_size: int size of the vocabulary
  Returns:
Katherine Wu's avatar
Katherine Wu committed
61
62
    Returns the cross entropy loss and weight tensors: float32 tensors with
      shape [batch_size, max(length_logits, length_labels)]
Katherine Wu's avatar
Katherine Wu committed
63
  """
64
  with tf.name_scope("loss", values=[logits, labels]):
Katherine Wu's avatar
Katherine Wu committed
65
66
67
    logits, labels = _pad_tensors_to_same_length(logits, labels)

    # Calculate smoothing cross entropy
68
    with tf.name_scope("smoothing_cross_entropy", values=[logits, labels]):
Katherine Wu's avatar
Katherine Wu committed
69
      confidence = 1.0 - smoothing
70
      low_confidence = (1.0 - confidence) / tf.cast(vocab_size - 1, tf.float32)
Katherine Wu's avatar
Katherine Wu committed
71
72
73
74
75
76
77
78
79
80
81
      soft_targets = tf.one_hot(
          tf.cast(labels, tf.int32),
          depth=vocab_size,
          on_value=confidence,
          off_value=low_confidence)
      xentropy = tf.nn.softmax_cross_entropy_with_logits_v2(
          logits=logits, labels=soft_targets)

      # Calculate the best (lowest) possible value of cross entropy, and
      # subtract from the cross entropy loss.
      normalizing_constant = -(
82
83
          confidence * tf.log(confidence) + tf.cast(vocab_size - 1, tf.float32)
          * low_confidence * tf.log(low_confidence + 1e-20))
Katherine Wu's avatar
Katherine Wu committed
84
85
      xentropy -= normalizing_constant

86
    weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
Katherine Wu's avatar
Katherine Wu committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    return xentropy * weights, weights


def _convert_to_eval_metric(metric_fn):
  """Wrap a metric fn that returns scores and weights as an eval metric fn.

  The input metric_fn returns values for the current batch. The wrapper
  aggregates the return values collected over all of the batches evaluated.

  Args:
    metric_fn: function that returns scores and weights for the current batch's
      logits and predicted labels.

  Returns:
    function that aggregates the scores and weights from metric_fn.
  """
  def problem_metric_fn(*args):
    """Returns an aggregation of the metric_fn's returned values."""
    (scores, weights) = metric_fn(*args)

    # The tf.metrics.mean function assures correct aggregation.
    return tf.metrics.mean(scores, weights)
  return problem_metric_fn


def get_eval_metrics(logits, labels, params):
  """Return dictionary of model evaluation metrics."""
  metrics = {
      "accuracy": _convert_to_eval_metric(padded_accuracy)(logits, labels),
      "accuracy_top5": _convert_to_eval_metric(padded_accuracy_top5)(
          logits, labels),
      "accuracy_per_sequence": _convert_to_eval_metric(
          padded_sequence_accuracy)(logits, labels),
      "neg_log_perplexity": _convert_to_eval_metric(padded_neg_log_perplexity)(
121
          logits, labels, params["vocab_size"]),
Katherine Wu's avatar
Katherine Wu committed
122
123
  }

124
125
126
127
128
129
130
131
132
133
134
  if not params["use_tpu"]:
    # TPU does not support tf.py_func
    metrics.update({
        "approx_bleu_score": _convert_to_eval_metric(
            bleu_score)(logits, labels),
        "rouge_2_fscore": _convert_to_eval_metric(
            rouge_2_fscore)(logits, labels),
        "rouge_L_fscore": _convert_to_eval_metric(
            rouge_l_fscore)(logits, labels),
    })

Katherine Wu's avatar
Katherine Wu committed
135
136
137
138
139
140
141
142
143
144
  # Prefix each of the metric names with "metrics/". This allows the metric
  # graphs to display under the "metrics" category in TensorBoard.
  metrics = {"metrics/%s" % k: v for k, v in six.iteritems(metrics)}
  return metrics


def padded_accuracy(logits, labels):
  """Percentage of times that predictions matches labels on non-0s."""
  with tf.variable_scope("padded_accuracy", values=[logits, labels]):
    logits, labels = _pad_tensors_to_same_length(logits, labels)
145
146
147
148
    weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
    outputs = tf.cast(tf.argmax(logits, axis=-1), tf.int32)
    padded_labels = tf.cast(labels, tf.int32)
    return tf.cast(tf.equal(outputs, padded_labels), tf.float32), weights
Katherine Wu's avatar
Katherine Wu committed
149
150
151
152
153
154


def padded_accuracy_topk(logits, labels, k):
  """Percentage of times that top-k predictions matches labels on non-0s."""
  with tf.variable_scope("padded_accuracy_topk", values=[logits, labels]):
    logits, labels = _pad_tensors_to_same_length(logits, labels)
155
    weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
Katherine Wu's avatar
Katherine Wu committed
156
157
    effective_k = tf.minimum(k, tf.shape(logits)[-1])
    _, outputs = tf.nn.top_k(logits, k=effective_k)
158
159
    outputs = tf.cast(outputs, tf.int32)
    padded_labels = tf.cast(labels, tf.int32)
Katherine Wu's avatar
Katherine Wu committed
160
161
    padded_labels = tf.expand_dims(padded_labels, axis=-1)
    padded_labels += tf.zeros_like(outputs)  # Pad to same shape.
162
    same = tf.cast(tf.equal(outputs, padded_labels), tf.float32)
Katherine Wu's avatar
Katherine Wu committed
163
164
165
166
167
168
169
170
171
172
173
174
    same_topk = tf.reduce_sum(same, axis=-1)
    return same_topk, weights


def padded_accuracy_top5(logits, labels):
  return padded_accuracy_topk(logits, labels, 5)


def padded_sequence_accuracy(logits, labels):
  """Percentage of times that predictions matches labels everywhere (non-0)."""
  with tf.variable_scope("padded_sequence_accuracy", values=[logits, labels]):
    logits, labels = _pad_tensors_to_same_length(logits, labels)
175
176
177
178
179
    weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
    outputs = tf.cast(tf.argmax(logits, axis=-1), tf.int32)
    padded_labels = tf.cast(labels, tf.int32)
    not_correct = (tf.cast(tf.not_equal(outputs, padded_labels), tf.float32) *
                   weights)
Katherine Wu's avatar
Katherine Wu committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    axis = list(range(1, len(outputs.get_shape())))
    correct_seq = 1.0 - tf.minimum(1.0, tf.reduce_sum(not_correct, axis=axis))
    return correct_seq, tf.constant(1.0)


def padded_neg_log_perplexity(logits, labels, vocab_size):
  """Average log-perplexity excluding padding 0s. No smoothing."""
  num, den = padded_cross_entropy_loss(logits, labels, 0, vocab_size)
  return -num, den


def bleu_score(logits, labels):
  """Approximate BLEU score computation between labels and predictions.

  An approximate BLEU scoring method since we do not glue word pieces or
  decode the ids and tokenize the output. By default, we use ngram order of 4
  and use brevity penalty. Also, this does not have beam search.

  Args:
    logits: Tensor of size [batch_size, length_logits, vocab_size]
    labels: Tensor of size [batch-size, length_labels]

  Returns:
    bleu: int, approx bleu score
  """
205
  predictions = tf.cast(tf.argmax(logits, axis=-1), tf.int32)
Frederick Liu's avatar
Frederick Liu committed
206
  # TODO: Look into removing use of py_func  # pylint: disable=g-bad-todo
Katherine Wu's avatar
Katherine Wu committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
  bleu = tf.py_func(compute_bleu, (labels, predictions), tf.float32)
  return bleu, tf.constant(1.0)


def _get_ngrams_with_counter(segment, max_order):
  """Extracts all n-grams up to a given maximum order from an input segment.

  Args:
    segment: text segment from which n-grams will be extracted.
    max_order: maximum length in tokens of the n-grams returned by this
        methods.

  Returns:
    The Counter containing all n-grams upto max_order in segment
    with a count of how many times each n-gram occurred.
  """
  ngram_counts = collections.Counter()
  for order in xrange(1, max_order + 1):
    for i in xrange(0, len(segment) - order + 1):
      ngram = tuple(segment[i:i + order])
      ngram_counts[ngram] += 1
  return ngram_counts


def compute_bleu(reference_corpus, translation_corpus, max_order=4,
                 use_bp=True):
  """Computes BLEU score of translated segments against one or more references.

  Args:
    reference_corpus: list of references for each translation. Each
        reference should be tokenized into a list of tokens.
    translation_corpus: list of translations to score. Each translation
        should be tokenized into a list of tokens.
    max_order: Maximum n-gram order to use when computing BLEU score.
    use_bp: boolean, whether to apply brevity penalty.

  Returns:
    BLEU score.
  """
  reference_length = 0
  translation_length = 0
  bp = 1.0
  geo_mean = 0

  matches_by_order = [0] * max_order
  possible_matches_by_order = [0] * max_order
  precisions = []

  for (references, translations) in zip(reference_corpus, translation_corpus):
    reference_length += len(references)
    translation_length += len(translations)
    ref_ngram_counts = _get_ngrams_with_counter(references, max_order)
    translation_ngram_counts = _get_ngrams_with_counter(translations, max_order)

    overlap = dict((ngram,
                    min(count, translation_ngram_counts[ngram]))
                   for ngram, count in ref_ngram_counts.items())

    for ngram in overlap:
      matches_by_order[len(ngram) - 1] += overlap[ngram]
    for ngram in translation_ngram_counts:
      possible_matches_by_order[len(ngram) - 1] += translation_ngram_counts[
          ngram]

  precisions = [0] * max_order
  smooth = 1.0

  for i in xrange(0, max_order):
    if possible_matches_by_order[i] > 0:
      precisions[i] = float(matches_by_order[i]) / possible_matches_by_order[i]
      if matches_by_order[i] > 0:
        precisions[i] = float(matches_by_order[i]) / possible_matches_by_order[
            i]
      else:
        smooth *= 2
        precisions[i] = 1.0 / (smooth * possible_matches_by_order[i])
    else:
      precisions[i] = 0.0

  if max(precisions) > 0:
    p_log_sum = sum(math.log(p) for p in precisions if p)
    geo_mean = math.exp(p_log_sum / max_order)

  if use_bp:
    ratio = translation_length / reference_length
    bp = math.exp(1 - 1. / ratio) if ratio < 1.0 else 1.0
  bleu = geo_mean * bp
  return np.float32(bleu)


def rouge_2_fscore(logits, labels):
  """ROUGE-2 F1 score computation between labels and predictions.

  This is an approximate ROUGE scoring method since we do not glue word pieces
  or decode the ids and tokenize the output.

  Args:
    logits: tensor, model predictions
    labels: tensor, gold output.

  Returns:
    rouge2_fscore: approx rouge-2 f1 score.
  """
310
  predictions = tf.cast(tf.argmax(logits, axis=-1), tf.int32)
Frederick Liu's avatar
Frederick Liu committed
311
  # TODO: Look into removing use of py_func  # pylint: disable=g-bad-todo
Katherine Wu's avatar
Katherine Wu committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
  rouge_2_f_score = tf.py_func(rouge_n, (predictions, labels), tf.float32)
  return rouge_2_f_score, tf.constant(1.0)


def _get_ngrams(n, text):
  """Calculates n-grams.

  Args:
    n: which n-grams to calculate
    text: An array of tokens

  Returns:
    A set of n-grams
  """
  ngram_set = set()
  text_length = len(text)
  max_index_ngram_start = text_length - n
  for i in range(max_index_ngram_start + 1):
    ngram_set.add(tuple(text[i:i + n]))
  return ngram_set


def rouge_n(eval_sentences, ref_sentences, n=2):
  """Computes ROUGE-N f1 score of two text collections of sentences.

  Source: https://www.microsoft.com/en-us/research/publication/
  rouge-a-package-for-automatic-evaluation-of-summaries/

  Args:
    eval_sentences: Predicted sentences.
    ref_sentences: Sentences from the reference set
    n: Size of ngram.  Defaults to 2.

  Returns:
    f1 score for ROUGE-N
  """
  f1_scores = []
  for eval_sentence, ref_sentence in zip(eval_sentences, ref_sentences):
    eval_ngrams = _get_ngrams(n, eval_sentence)
    ref_ngrams = _get_ngrams(n, ref_sentence)
    ref_count = len(ref_ngrams)
    eval_count = len(eval_ngrams)

    # Count the overlapping ngrams between evaluated and reference
    overlapping_ngrams = eval_ngrams.intersection(ref_ngrams)
    overlapping_count = len(overlapping_ngrams)

    # Handle edge case. This isn't mathematically correct, but it's good enough
    if eval_count == 0:
      precision = 0.0
    else:
      precision = float(overlapping_count) / eval_count
    if ref_count == 0:
      recall = 0.0
    else:
      recall = float(overlapping_count) / ref_count
    f1_scores.append(2.0 * ((precision * recall) / (precision + recall + 1e-8)))

  # return overlapping_count / reference_count
  return np.mean(f1_scores, dtype=np.float32)


def rouge_l_fscore(predictions, labels):
  """ROUGE scores computation between labels and predictions.

  This is an approximate ROUGE scoring method since we do not glue word pieces
  or decode the ids and tokenize the output.

  Args:
    predictions: tensor, model predictions
    labels: tensor, gold output.

  Returns:
    rouge_l_fscore: approx rouge-l f1 score.
  """
387
  outputs = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)
Katherine Wu's avatar
Katherine Wu committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
  rouge_l_f_score = tf.py_func(rouge_l_sentence_level, (outputs, labels),
                               tf.float32)
  return rouge_l_f_score, tf.constant(1.0)


def rouge_l_sentence_level(eval_sentences, ref_sentences):
  """Computes ROUGE-L (sentence level) of two collections of sentences.

  Source: https://www.microsoft.com/en-us/research/publication/
  rouge-a-package-for-automatic-evaluation-of-summaries/

  Calculated according to:
  R_lcs = LCS(X,Y)/m
  P_lcs = LCS(X,Y)/n
  F_lcs = ((1 + beta^2)*R_lcs*P_lcs) / (R_lcs + (beta^2) * P_lcs)

  where:
  X = reference summary
  Y = Candidate summary
  m = length of reference summary
  n = length of candidate summary

  Args:
    eval_sentences: The sentences that have been picked by the summarizer
    ref_sentences: The sentences from the reference set

  Returns:
    A float: F_lcs
  """

  f1_scores = []
  for eval_sentence, ref_sentence in zip(eval_sentences, ref_sentences):
    m = float(len(ref_sentence))
    n = float(len(eval_sentence))
    lcs = _len_lcs(eval_sentence, ref_sentence)
    f1_scores.append(_f_lcs(lcs, m, n))
  return np.mean(f1_scores, dtype=np.float32)


def _len_lcs(x, y):
  """Returns the length of the Longest Common Subsequence between two seqs.

  Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence

  Args:
    x: sequence of words
    y: sequence of words

  Returns
    integer: Length of LCS between x and y
  """
  table = _lcs(x, y)
  n, m = len(x), len(y)
  return table[n, m]


def _lcs(x, y):
  """Computes the length of the LCS between two seqs.

  The implementation below uses a DP programming algorithm and runs
  in O(nm) time where n = len(x) and m = len(y).
  Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence

  Args:
    x: collection of words
    y: collection of words

  Returns:
    Table of dictionary of coord and len lcs
  """
  n, m = len(x), len(y)
  table = dict()
  for i in range(n + 1):
    for j in range(m + 1):
      if i == 0 or j == 0:
        table[i, j] = 0
      elif x[i - 1] == y[j - 1]:
        table[i, j] = table[i - 1, j - 1] + 1
      else:
        table[i, j] = max(table[i - 1, j], table[i, j - 1])
  return table


def _f_lcs(llcs, m, n):
  """Computes the LCS-based F-measure score.

  Source: http://research.microsoft.com/en-us/um/people/cyl/download/papers/
  rouge-working-note-v1.3.1.pdf

  Args:
    llcs: Length of LCS
    m: number of words in reference summary
    n: number of words in candidate summary

  Returns:
    Float. LCS-based F-measure score
  """
  r_lcs = llcs / m
  p_lcs = llcs / n
  beta = p_lcs / (r_lcs + 1e-12)
  num = (1 + (beta ** 2)) * r_lcs * p_lcs
  denom = r_lcs + ((beta ** 2) * p_lcs)
  f_lcs = num / (denom + 1e-12)
  return f_lcs