translate.py 6.79 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
16
"""Translate text or files using trained transformer model."""

Hongkun Yu's avatar
Hongkun Yu committed
17
# Import libraries
18
from absl import logging
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19
import numpy as np
20
21
import tensorflow as tf

22
from official.nlp.transformer.utils import tokenizer
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

_EXTRA_DECODE_LENGTH = 100
_BEAM_SIZE = 4
_ALPHA = 0.6


def _get_sorted_inputs(filename):
  """Read and sort lines from the file sorted by decreasing length.

  Args:
    filename: String name of file to read inputs from.
  Returns:
    Sorted list of inputs, and dictionary mapping original index->sorted index
    of each element.
  """
  with tf.io.gfile.GFile(filename) as f:
    records = f.read().split("\n")
    inputs = [record.strip() for record in records]
    if not inputs[-1]:
      inputs.pop()

  input_lens = [(i, len(line.split())) for i, line in enumerate(inputs)]
  sorted_input_lens = sorted(input_lens, key=lambda x: x[1], reverse=True)

  sorted_inputs = [None] * len(sorted_input_lens)
  sorted_keys = [0] * len(sorted_input_lens)
  for i, (index, _) in enumerate(sorted_input_lens):
    sorted_inputs[i] = inputs[index]
    sorted_keys[index] = i
  return sorted_inputs, sorted_keys


def _encode_and_add_eos(line, subtokenizer):
  """Encode line with subtokenizer, and add EOS id to the end."""
  return subtokenizer.encode(line) + [tokenizer.EOS_ID]


def _trim_and_decode(ids, subtokenizer):
  """Trim EOS and PAD tokens from ids, and decode to return a string."""
  try:
    index = list(ids).index(tokenizer.EOS_ID)
    return subtokenizer.decode(ids[:index])
  except ValueError:  # No EOS found in sequence
    return subtokenizer.decode(ids)


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
69
70
71
72
73
74
75
def translate_file(model,
                   params,
                   subtokenizer,
                   input_file,
                   output_file=None,
                   print_all_translations=True,
                   distribution_strategy=None):
76
77
78
  """Translate lines in file, and save to output file if specified.

  Args:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
79
80
81
82
83
84
85
86
87
88
    model: A Keras model, used to generate the translations.
    params: A dictionary, containing the translation related parameters.
    subtokenizer: A subtokenizer object, used for encoding and decoding source
      and translated lines.
    input_file: A file containing lines to translate.
    output_file: A file that stores the generated translations.
    print_all_translations: A bool. If true, all translations are printed to
      stdout.
    distribution_strategy: A distribution strategy, used to perform inference
      directly with tf.function instead of Keras model.predict().
89
90
91
92

  Raises:
    ValueError: if output file is invalid.
  """
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
93
  batch_size = params["decode_batch_size"]
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

  # Read and sort inputs by length. Keep dictionary (original index-->new index
  # in sorted list) to write translations in the original order.
  sorted_inputs, sorted_keys = _get_sorted_inputs(input_file)
  total_samples = len(sorted_inputs)
  num_decode_batches = (total_samples - 1) // batch_size + 1

  def input_generator():
    """Yield encoded strings from sorted_inputs."""
    for i in range(num_decode_batches):
      lines = [
          sorted_inputs[j + i * batch_size]
          for j in range(batch_size)
          if j + i * batch_size < total_samples
      ]
      lines = [_encode_and_add_eos(l, subtokenizer) for l in lines]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
110
111
112
      if distribution_strategy:
        for j in range(batch_size - len(lines)):
          lines.append([tokenizer.EOS_ID])
113
      batch = tf.keras.preprocessing.sequence.pad_sequences(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
114
115
116
117
          lines,
          maxlen=params["decode_max_length"],
          dtype="int32",
          padding="post")
118
      logging.info("Decoding batch %d out of %d.", i, num_decode_batches)
119
120
      yield batch

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
121
122
123
124
125
126
  @tf.function
  def predict_step(inputs):
    """Decoding step function for TPU runs."""

    def _step_fn(inputs):
      """Per replica step function."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
127
128
129
130
      tag = inputs[0]
      val_inputs = inputs[1]
      val_outputs, _ = model([val_inputs], training=False)
      return tag, val_outputs
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
131

Ken Franko's avatar
Ken Franko committed
132
    return distribution_strategy.run(_step_fn, args=(inputs,))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
133

134
  translations = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
135
136
137
  if distribution_strategy:
    num_replicas = distribution_strategy.num_replicas_in_sync
    local_batch_size = params["decode_batch_size"] // num_replicas
138
  for i, text in enumerate(input_generator()):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
139
140
    if distribution_strategy:
      text = np.reshape(text, [num_replicas, local_batch_size, -1])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
141
142
      # Add tag to the input of each replica with the reordering logic after
      # outputs, to ensure the output order matches the input order.
Chris Jones's avatar
Chris Jones committed
143
144
145
146
147
148
      text = tf.constant(text)

      @tf.function
      def text_as_per_replica():
        replica_context = tf.distribute.get_replica_context()
        replica_id = replica_context.replica_id_in_sync_group
Frederick Liu's avatar
Frederick Liu committed
149
        return replica_id, text[replica_id]  # pylint: disable=cell-var-from-loop
Chris Jones's avatar
Chris Jones committed
150

Ken Franko's avatar
Ken Franko committed
151
      text = distribution_strategy.run(text_as_per_replica)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
152
      outputs = distribution_strategy.experimental_local_results(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
153
          predict_step(text))
Isha Arkatkar's avatar
Isha Arkatkar committed
154
155
      val_outputs = [output for _, output in outputs]

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
156
      val_outputs = np.reshape(val_outputs, [params["decode_batch_size"], -1])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
157
158
    else:
      val_outputs, _ = model.predict(text)
159
160
161

    length = len(val_outputs)
    for j in range(length):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
162
163
164
165
      if j + i * batch_size < total_samples:
        translation = _trim_and_decode(val_outputs[j], subtokenizer)
        translations.append(translation)
        if print_all_translations:
166
167
          logging.info("Translating:\n\tInput: %s\n\tOutput: %s",
                       sorted_inputs[j + i * batch_size], translation)
168
169
170
171
172
173

  # Write translations in the order they appeared in the original file.
  if output_file is not None:
    if tf.io.gfile.isdir(output_file):
      raise ValueError("File output is a directory, will not save outputs to "
                       "file.")
174
    logging.info("Writing to file %s", output_file)
Hongkun Yu's avatar
Hongkun Yu committed
175
    with tf.io.gfile.GFile(output_file, "w") as f:
176
177
178
179
180
181
182
183
      for i in sorted_keys:
        f.write("%s\n" % translations[i])


def translate_from_text(model, subtokenizer, txt):
  encoded_txt = _encode_and_add_eos(txt, subtokenizer)
  result = model.predict(encoded_txt)
  outputs = result["outputs"]
184
  logging.info("Original: \"%s\"", txt)
185
186
187
188
189
  translate_from_input(outputs, subtokenizer)


def translate_from_input(outputs, subtokenizer):
  translation = _trim_and_decode(outputs, subtokenizer)
190
  logging.info("Translation: \"%s\"", translation)