model_params.py 2.87 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Katherine Wu's avatar
Katherine Wu committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

Katherine Wu's avatar
Katherine Wu committed
15
16
"""Defines Transformer model parameters."""

Frederick Liu's avatar
Frederick Liu committed
17
import collections
18
19


Frederick Liu's avatar
Frederick Liu committed
20
BASE_PARAMS = collections.defaultdict(
21
    lambda: None,  # Set default value to None.
Katherine Wu's avatar
Katherine Wu committed
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    # Input params
    default_batch_size=2048,  # Maximum number of tokens per batch of examples.
    default_batch_size_tpu=32768,
    max_length=256,  # Maximum number of tokens per example.

    # Model params
    initializer_gain=1.0,  # Used in trainable variable initialization.
    vocab_size=33708,  # Number of tokens defined in the vocabulary file.
    hidden_size=512,  # Model dimension in the hidden layers.
    num_hidden_layers=6,  # Number of layers in the encoder and decoder stacks.
    num_heads=8,  # Number of heads to use in multi-headed attention.
    filter_size=2048,  # Inner layer dimension in the feedforward network.

    # Dropout values (only used when training)
    layer_postprocess_dropout=0.1,
    attention_dropout=0.1,
    relu_dropout=0.1,

    # Training params
    label_smoothing=0.1,
    learning_rate=2.0,
    learning_rate_decay_rate=1.0,
    learning_rate_warmup_steps=16000,

    # Optimizer params
    optimizer_adam_beta1=0.9,
    optimizer_adam_beta2=0.997,
    optimizer_adam_epsilon=1e-09,

    # Default prediction params
    extra_decode_length=50,
    beam_size=4,
    alpha=0.6,  # used to calculate length normalization in beam search

    # TPU specific parameters
    use_tpu=False,
    static_batch=False,
    allow_ffn_pad=True,
)

63
64
BIG_PARAMS = BASE_PARAMS.copy()
BIG_PARAMS.update(
65
66
67
68
69
70
71
72
    default_batch_size=4096,

    # default batch size is smaller than for BASE_PARAMS due to memory limits.
    default_batch_size_tpu=16384,

    hidden_size=1024,
    filter_size=4096,
    num_heads=16,
73
74
75
76
77
78
79
80
81
82
83
84
85
86
)

# Parameters for running the model in multi gpu. These should not change the
# params that modify the model shape (such as the hidden_size or num_heads).
BASE_MULTI_GPU_PARAMS = BASE_PARAMS.copy()
BASE_MULTI_GPU_PARAMS.update(
    learning_rate_warmup_steps=8000
)

BIG_MULTI_GPU_PARAMS = BIG_PARAMS.copy()
BIG_MULTI_GPU_PARAMS.update(
    layer_postprocess_dropout=0.3,
    learning_rate_warmup_steps=8000
)
87

88
89
90
# Parameters for testing the model
TINY_PARAMS = BASE_PARAMS.copy()
TINY_PARAMS.update(
91
92
93
94
95
    default_batch_size=1024,
    default_batch_size_tpu=1024,
    hidden_size=32,
    num_heads=4,
    filter_size=256,
96
)