"test/srt/models/test_embedding_models.py" did not exist on "70cc0749ce0d8a6fa28323c057311ebe88a6157e"
xlnet_benchmark.py 7.34 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes XLNet benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import time

# pylint: disable=g-bad-import-order
from absl import flags
from absl.testing import flagsaver
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.benchmark import bert_benchmark_utils as benchmark_utils
from official.nlp.xlnet import run_classifier
Hongkun Yu's avatar
Hongkun Yu committed
33
from official.nlp.xlnet import run_squad
34
from official.benchmark import benchmark_wrappers
35

36
37
38
39
40

# pylint: disable=line-too-long
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/xlnet/large/xlnet_model-1'
CLASSIFIER_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/xlnet/imdb/spiece.model.len-512.train.tf_record'
CLASSIFIER_EVAL_DATA_PATH = 'gs://tf-perfzero-data/xlnet/imdb/spiece.model.len-512.dev.eval.tf_record'
Hongkun Yu's avatar
Hongkun Yu committed
41
SQUAD_DATA_PATH = 'gs://tf-perfzero-data/xlnet/squadv2_cased/'
42
43
44
45
46
# pylint: enable=line-too-long

FLAGS = flags.FLAGS


Hongkun Yu's avatar
Hongkun Yu committed
47
class XLNetBenchmarkBase(benchmark_utils.BertBenchmarkBase):
48
49
50
  """Base class to hold methods common to test classes in the module."""

  def __init__(self, output_dir=None):
Hongkun Yu's avatar
Hongkun Yu committed
51
    super(XLNetBenchmarkBase, self).__init__(output_dir)
52
53
54
55
56
57
58
59
    self.num_epochs = None
    self.num_steps_per_epoch = None

  @flagsaver.flagsaver
  def _run_xlnet_classifier(self):
    """Starts XLNet classification task."""
    run_classifier.main(unused_argv=None)

Hongkun Yu's avatar
Hongkun Yu committed
60
61
62
63
  @flagsaver.flagsaver
  def _run_xlnet_squad(self):
    """Starts XLNet classification task."""
    run_squad.main(unused_argv=None)
64

Hongkun Yu's avatar
Hongkun Yu committed
65
66
67

class XLNetClassifyAccuracy(XLNetBenchmarkBase):
  """Short accuracy test for XLNet classifier model.
68
69
70
71
72
73
74
75
76
77
78
79
80

  Tests XLNet classification task model accuracy. The naming
  convention of below test cases follow
  `benchmark_(number of gpus)_gpu_(dataset type)` format.
  """

  def __init__(self, output_dir=None, **kwargs):
    self.train_data_path = CLASSIFIER_TRAIN_DATA_PATH
    self.eval_data_path = CLASSIFIER_EVAL_DATA_PATH
    self.pretrained_checkpoint_path = PRETRAINED_CHECKPOINT_PATH

    super(XLNetClassifyAccuracy, self).__init__(output_dir=output_dir)

81
  @benchmark_wrappers.enable_runtime_flags
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
  def _run_and_report_benchmark(self,
                                training_summary_path,
                                min_accuracy=0.95,
                                max_accuracy=0.97):
    """Starts XLNet accuracy benchmark test."""

    start_time_sec = time.time()
    self._run_xlnet_classifier()
    wall_time_sec = time.time() - start_time_sec

    with tf.io.gfile.GFile(training_summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))

    super(XLNetClassifyAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=min_accuracy,
        max_accuracy=max_accuracy)

  def _setup(self):
    super(XLNetClassifyAccuracy, self)._setup()
    FLAGS.test_data_size = 25024
    FLAGS.train_batch_size = 16
    FLAGS.seq_len = 512
    FLAGS.mem_len = 0
    FLAGS.n_layer = 24
    FLAGS.d_model = 1024
    FLAGS.d_embed = 1024
    FLAGS.n_head = 16
    FLAGS.d_head = 64
    FLAGS.d_inner = 4096
    FLAGS.untie_r = True
    FLAGS.n_class = 2
    FLAGS.ff_activation = 'gelu'
    FLAGS.strategy_type = 'mirror'
    FLAGS.learning_rate = 2e-5
    FLAGS.train_steps = 4000
    FLAGS.warmup_steps = 500
    FLAGS.iterations = 200
    FLAGS.bi_data = False
    FLAGS.init_checkpoint = self.pretrained_checkpoint_path
    FLAGS.train_tfrecord_path = self.train_data_path
    FLAGS.test_tfrecord_path = self.eval_data_path

  def benchmark_8_gpu_imdb(self):
    """Run XLNet model accuracy test with 8 GPUs."""
    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_imdb')
    # Sets timer_callback to None as we do not use it now.
    self.timer_callback = None

133
134
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
135
136
137
    self._run_and_report_benchmark(summary_path)


Hongkun Yu's avatar
Hongkun Yu committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
class XLNetSquadAccuracy(XLNetBenchmarkBase):
  """Short accuracy test for XLNet squad model.

  Tests XLNet squad task model accuracy. The naming
  convention of below test cases follow
  `benchmark_(number of gpus)_gpu_(dataset type)` format.
  """

  def __init__(self, output_dir=None, **kwargs):
    self.train_data_path = SQUAD_DATA_PATH
    self.predict_file = os.path.join(SQUAD_DATA_PATH, "dev-v2.0.json")
    self.test_data_path = os.path.join(SQUAD_DATA_PATH, "12048.eval.tf_record")
    self.spiece_model_file = os.path.join(SQUAD_DATA_PATH, "spiece.cased.model")
    self.pretrained_checkpoint_path = PRETRAINED_CHECKPOINT_PATH

    super(XLNetSquadAccuracy, self).__init__(output_dir=output_dir)

155
  @benchmark_wrappers.enable_runtime_flags
Hongkun Yu's avatar
Hongkun Yu committed
156
157
  def _run_and_report_benchmark(self,
                                training_summary_path,
Hongkun Yu's avatar
Hongkun Yu committed
158
159
                                min_accuracy=87.0,
                                max_accuracy=89.0):
Hongkun Yu's avatar
Hongkun Yu committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    """Starts XLNet accuracy benchmark test."""

    start_time_sec = time.time()
    self._run_xlnet_squad()
    wall_time_sec = time.time() - start_time_sec

    with tf.io.gfile.GFile(training_summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))

    super(XLNetSquadAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=min_accuracy,
        max_accuracy=max_accuracy)

  def _setup(self):
    super(XLNetSquadAccuracy, self)._setup()
    FLAGS.train_batch_size = 16
    FLAGS.seq_len = 512
    FLAGS.mem_len = 0
    FLAGS.n_layer = 24
    FLAGS.d_model = 1024
    FLAGS.d_embed = 1024
    FLAGS.n_head = 16
    FLAGS.d_head = 64
    FLAGS.d_inner = 4096
    FLAGS.untie_r = True
    FLAGS.ff_activation = 'gelu'
    FLAGS.strategy_type = 'mirror'
    FLAGS.learning_rate = 3e-5
    FLAGS.train_steps = 8000
    FLAGS.warmup_steps = 1000
    FLAGS.iterations = 1000
    FLAGS.bi_data = False
    FLAGS.init_checkpoint = self.pretrained_checkpoint_path
    FLAGS.train_tfrecord_path = self.train_data_path
    FLAGS.test_tfrecord_path = self.test_data_path
    FLAGS.spiece_model_file = self.spiece_model_file
    FLAGS.predict_file = self.predict_file
    FLAGS.adam_epsilon=1e-6
    FLAGS.lr_layer_decay_rate=0.75

  def benchmark_8_gpu_squadv2(self):
    """Run XLNet model squad v2 accuracy test with 8 GPUs."""
    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squadv2')
    FLAGS.predict_dir = FLAGS.model_dir
    # Sets timer_callback to None as we do not use it now.
    self.timer_callback = None

    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    self._run_and_report_benchmark(summary_path)


215
216
if __name__ == '__main__':
  tf.test.main()