benchmark_wrappers.py 3.44 KB
Newer Older
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
1
# Lint as: python3
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
"""Utils to annotate and trace benchmarks."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import flags
from absl import logging
from absl.testing import flagsaver

FLAGS = flags.FLAGS

flags.DEFINE_multi_string(
    'benchmark_method_flags', None,
    'Optional list of runtime flags of the form key=value. Specify '
    'multiple times to specify different flags. These will override the FLAGS '
    'object directly after hardcoded settings in individual benchmark methods '
    'before they call _run_and_report benchmark. Example if we set '
    '--benchmark_method_flags=train_steps=10 and a benchmark method hardcodes '
    'FLAGS.train_steps=10000 and later calls _run_and_report_benchmark, '
    'it\'ll only run for 10 steps. This is useful for '
    'debugging/profiling workflows.')


def enable_runtime_flags(decorated_func):
  """Sets attributes from --benchmark_method_flags for method execution.

  @enable_runtime_flags decorator temporarily adds flags passed in via
  --benchmark_method_flags and runs the decorated function in that context.

  A user can set --benchmark_method_flags=train_steps=5 to run the benchmark
  method in the snippet below with FLAGS.train_steps=5 for debugging (without
  modifying the benchmark code).

  class ModelBenchmark():

    @benchmark_wrappers.enable_runtime_flags
    def _run_and_report_benchmark(self):
      # run benchmark ...
      # report benchmark results ...

    def benchmark_method(self):
      FLAGS.train_steps = 1000
      ...
      self._run_and_report_benchmark()

  Args:
    decorated_func: The method that runs the benchmark after previous setup
      execution that set some flags.

  Returns:
    new_func: The same method which executes in a temporary context where flag
      overrides from --benchmark_method_flags are active.
  """

  def runner(*args, **kwargs):
    """Creates a temporary context to activate --benchmark_method_flags."""
    if FLAGS.benchmark_method_flags:
      saved_flag_values = flagsaver.save_flag_values()
      for key_value in FLAGS.benchmark_method_flags:
        key, value = key_value.split('=', 1)
        try:
          numeric_float = float(value)
          numeric_int = int(numeric_float)
          if abs(numeric_int) == abs(numeric_float):
            flag_value = numeric_int
          else:
            flag_value = numeric_float
        except ValueError:
          flag_value = value
        logging.info('Setting --%s=%s', key, flag_value)
        setattr(FLAGS, key, flag_value)
    else:
      saved_flag_values = None
    try:
      result = decorated_func(*args, **kwargs)
      return result
    finally:
      if saved_flag_values:
        flagsaver.restore_flag_values(saved_flag_values)

  return runner