README.md 6.92 KB
Newer Older
1
2
3
<div align="center">
  <img src="https://storage.googleapis.com/tf_model_garden/tf_model_garden_logo.png">
</div>
4

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
5
# TensorFlow Official Models
6

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
7
8
9
10
The TensorFlow official models are a collection of models
that use TensorFlow’s high-level APIs.
They are intended to be well-maintained, tested, and kept up to date
with the latest TensorFlow API.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
11

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
12
13
14
15
They should also be reasonably optimized for fast performance while still
being easy to read.
These models are used as end-to-end tests, ensuring that the models run
with the same or improved speed and performance with each new TensorFlow build.
16

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
17
## More models to come!
18

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19
20
21
The team is actively developing new models.
In the near future, we will add:

22
23
* State-of-the-art language understanding models.
* State-of-the-art image classification models.
bhack's avatar
bhack committed
24
* State-of-the-art object detection and instance segmentation models.
25
* State-of-the-art video classification models.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
27

## Table of Contents
28

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
29
30
31
32
- [Models and Implementations](#models-and-implementations)
  * [Computer Vision](#computer-vision)
    + [Image Classification](#image-classification)
    + [Object Detection and Segmentation](#object-detection-and-segmentation)
33
    + [Video Classification](#video-classification)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
34
35
36
  * [Natural Language Processing](#natural-language-processing)
  * [Recommendation](#recommendation)
- [How to get started with the official models](#how-to-get-started-with-the-official-models)
37
- [Contributions](#contributions)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
38
39

## Models and Implementations
Hongkun Yu's avatar
Hongkun Yu committed
40

41
### [Computer Vision](vision/README.md)
Hongkun Yu's avatar
Hongkun Yu committed
42

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
43
44
45
46
#### Image Classification

| Model | Reference (Paper) |
|-------|-------------------|
Yeqing Li's avatar
Yeqing Li committed
47
48
| [ResNet](vision/MODEL_GARDEN.md) | [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) |
| [ResNet-RS](vision/MODEL_GARDEN.md) | [Revisiting ResNets: Improved Training and Scaling Strategies](https://arxiv.org/abs/2103.07579) |
49
| [EfficientNet](vision/MODEL_GARDEN.md) | [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) |
Yeqing Li's avatar
Yeqing Li committed
50
| [Vision Transformer](vision/MODEL_GARDEN.md) | [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) |
51

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
52
#### Object Detection and Segmentation
53

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
54
55
| Model | Reference (Paper) |
|-------|-------------------|
Yeqing Li's avatar
Yeqing Li committed
56
57
58
59
| [RetinaNet](vision/MODEL_GARDEN.md) | [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002) |
| [Mask R-CNN](vision/MODEL_GARDEN.md) | [Mask R-CNN](https://arxiv.org/abs/1703.06870) |
| [SpineNet](vision/MODEL_GARDEN.md) | [SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization](https://arxiv.org/abs/1912.05027) |
| [Cascade RCNN-RS and RetinaNet-RS](vision/MODEL_GARDEN.md) | [Simple Training Strategies and Model Scaling for Object Detection](https://arxiv.org/abs/2107.00057)|
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
60

61
62
63
64
65
66
#### Video Classification

| Model | Reference (Paper) |
|-------|-------------------|
| [Mobile Video Networks (MoViNets)](projects/movinet) | [MoViNets: Mobile Video Networks for Efficient Video Recognition](https://arxiv.org/abs/2103.11511) |

67
### [Natural Language Processing](nlp/README.md)
68

Hongkun Yu's avatar
Hongkun Yu committed
69
70
71
72
73
74
75
76
77
78
79
#### Pre-trained Language Model

| Model | Reference (Paper) |
|-------|-------------------|
| [ALBERT](nlp/MODEL_GARDEN.md#available-model-configs) | [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942) |
| [BERT](nlp/MODEL_GARDEN.md#available-model-configs) | [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) |
| [ELECTRA](nlp/tasks/electra_task.py) | [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://arxiv.org/abs/2003.10555) |


#### Neural Machine Translation

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
80
81
| Model | Reference (Paper) |
|-------|-------------------|
82
| [Transformer](nlp/MODEL_GARDEN.md#available-model-configs) | [Attention Is All You Need](https://arxiv.org/abs/1706.03762) |
Hongkun Yu's avatar
Hongkun Yu committed
83
84
85
86
87
88
89
90
91
92
93
94

#### Natural Language Generation

| Model | Reference (Paper) |
|-------|-------------------|
| [NHNet (News Headline generation model)](projects/nhnet) | [Generating Representative Headlines for News Stories](https://arxiv.org/abs/2001.09386) |


#### Knowledge Distillation

| Model | Reference (Paper) |
|-------|-------------------|
95
| [MobileBERT](projects/mobilebert) | [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) |
96

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
97
98
### Recommendation

99
100
101
102
103
Model                            | Reference (Paper)
-------------------------------- | -----------------
[DLRM](recommendation/ranking)   | [Deep Learning Recommendation Model for Personalization and Recommendation Systems](https://arxiv.org/abs/1906.00091)
[DCN v2](recommendation/ranking) | [Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535)
[NCF](recommendation)            | [Neural Collaborative Filtering](https://arxiv.org/abs/1708.05031)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
104
105

## How to get started with the official models
Hongkun Yu's avatar
Hongkun Yu committed
106

107
108
109
110
111
112
113
114
115
116
117
118
119
*   The official models in the master branch are developed using
[master branch of TensorFlow 2](https://github.com/tensorflow/tensorflow/tree/master).
When you clone (the repository) or download (`pip` binary) master branch of
official models , master branch of TensorFlow gets downloaded as a
dependency. This is equivalent to the following.

```shell
pip3 install tf-models-nightly
pip3 install tensorflow-text-nightly # when model uses `nlp` packages
```

*   Incase of stable versions, targeting a specific release, Tensorflow-models
repository version numbers match with the target TensorFlow release. For
Hongkun Yu's avatar
Hongkun Yu committed
120
121
example, [TensorFlow-models v2.8.x](https://github.com/tensorflow/models/releases/tag/v2.8.0)
is compatible with [TensorFlow v2.8.x](https://github.com/tensorflow/tensorflow/releases/tag/v2.8.0).
Hongkun Yu's avatar
Hongkun Yu committed
122
This is equivalent to the following:
123
124

```shell
Hongkun Yu's avatar
Hongkun Yu committed
125
126
pip3 install tf-models-official==2.8.0
pip3 install tensorflow-text==2.8.0 # when models in uses `nlp` packages
127
```
Hongkun Yu's avatar
Hongkun Yu committed
128

Hongkun Yu's avatar
Hongkun Yu committed
129
130
131
132
133
134
135
Starting from 2.9.x release, we release the modeling library as
`tensorflow_models` package and users can `import tensorflow_models` directly to
access to the exported symbols. The API documentation is published to
[tensorflow.org](https://www.tensorflow.org/api_docs/python/tfm). If you are
using the latest nightly version or github code directly, please follow the
docstrings in the github.

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
136
Please follow the below steps before running models in this repository.
137

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
138
### Requirements
139

140
* The latest TensorFlow Model Garden release and the latest TensorFlow 2
Hongkun Yu's avatar
Hongkun Yu committed
141
  * If you are on a version of TensorFlow earlier than 2.2, please
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
142
upgrade your TensorFlow to [the latest TensorFlow 2](https://www.tensorflow.org/install/).
Hongkun Yu's avatar
Hongkun Yu committed
143
144
145
146
147
* Python 3.7+

Our integration tests run with Python 3.7. Although Python 3.6 should work, we
don't recommend earlier versions.

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
148
### Installation
Hongkun Yu's avatar
Hongkun Yu committed
149

150
151
Please check [here](https://github.com/tensorflow/models#Installation) for the
instructions
Chen Chen's avatar
Chen Chen committed
152

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
153
## Contributions
154

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
155
If you want to contribute, please review the [contribution guidelines](https://github.com/tensorflow/models/wiki/How-to-contribute).