layer_test.py 7.05 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test that the definitions of ResNet layers haven't changed.

These tests will fail if either:
  a)  The graph of a resnet layer changes and the change is significant enough
      that it can no longer load existing checkpoints.
  b)  The numerical results produced by the layer change.

A warning will be issued if the graph changes, but the checkpoint still loads.

In the event that a layer change is intended, or the TensorFlow implementation
of a layer changes (and thus changes the graph), regenerate using the command:

  $ python3 layer_test.py -regen
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import sys

import tensorflow as tf   # pylint: disable=g-bad-import-order
from official.resnet import resnet_model
from official.utils.testing import reference_data


DATA_FORMAT = "channels_last"  # CPU instructions often preclude channels_first
BATCH_SIZE = 32
BLOCK_TESTS = [
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    dict(bottleneck=True, projection=True, resnet_version=1, width=8,
         channels=4),
    dict(bottleneck=True, projection=True, resnet_version=2, width=8,
         channels=4),
    dict(bottleneck=True, projection=False, resnet_version=1, width=8,
         channels=4),
    dict(bottleneck=True, projection=False, resnet_version=2, width=8,
         channels=4),
    dict(bottleneck=False, projection=True, resnet_version=1, width=8,
         channels=4),
    dict(bottleneck=False, projection=True, resnet_version=2, width=8,
         channels=4),
    dict(bottleneck=False, projection=False, resnet_version=1, width=8,
         channels=4),
    dict(bottleneck=False, projection=False, resnet_version=2, width=8,
         channels=4),
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
]


class BaseTest(reference_data.BaseTest):
  """Tests for core ResNet layers."""

  @property
  def test_name(self):
    return "resnet"

  def _batch_norm_ops(self, test=False):
    name = "batch_norm"

    g = tf.Graph()
    with g.as_default():
75
76
      tf.compat.v1.set_random_seed(self.name_to_seed(name))
      input_tensor = tf.compat.v1.get_variable(
77
          "input_tensor", dtype=tf.float32,
78
          initializer=tf.random.uniform((32, 16, 16, 3), maxval=1)
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
      )
      layer = resnet_model.batch_norm(
          inputs=input_tensor, data_format=DATA_FORMAT, training=True)

    self._save_or_test_ops(
        name=name, graph=g, ops_to_eval=[input_tensor, layer], test=test,
        correctness_function=self.default_correctness_function
    )

  def make_projection(self, filters_out, strides, data_format):
    """1D convolution with stride projector.

    Args:
      filters_out: Number of filters in the projection.
      strides: Stride length for convolution.
      data_format: channels_first or channels_last

    Returns:
      A CNN projector function with kernel_size 1.
    """
    def projection_shortcut(inputs):
      return resnet_model.conv2d_fixed_padding(
          inputs=inputs, filters=filters_out, kernel_size=1, strides=strides,
          data_format=data_format)
    return projection_shortcut

  def _resnet_block_ops(self, test, batch_size, bottleneck, projection,
106
                        resnet_version, width, channels):
107
108
109
110
111
112
113
114
    """Test whether resnet block construction has changed.

    Args:
      test: Whether or not to run as a test case.
      batch_size: Number of points in the fake image. This is needed due to
        batch normalization.
      bottleneck: Whether or not to use bottleneck layers.
      projection: Whether or not to project the input.
115
      resnet_version: Which version of ResNet to test.
116
117
118
119
120
121
122
123
      width: The width of the fake image.
      channels: The number of channels in the fake image.
    """

    name = "batch-size-{}_{}{}_version-{}_width-{}_channels-{}".format(
        batch_size,
        "bottleneck" if bottleneck else "building",
        "_projection" if projection else "",
124
        resnet_version,
125
126
127
128
        width,
        channels
    )

129
    if resnet_version == 1:
130
131
132
133
134
135
136
137
138
139
      block_fn = resnet_model._building_block_v1
      if bottleneck:
        block_fn = resnet_model._bottleneck_block_v1
    else:
      block_fn = resnet_model._building_block_v2
      if bottleneck:
        block_fn = resnet_model._bottleneck_block_v2

    g = tf.Graph()
    with g.as_default():
140
      tf.compat.v1.set_random_seed(self.name_to_seed(name))
141
142
143
144
145
146
147
148
149
150
151
152
153
      strides = 1
      channels_out = channels
      projection_shortcut = None
      if projection:
        strides = 2
        channels_out *= strides
        projection_shortcut = self.make_projection(
            filters_out=channels_out, strides=strides, data_format=DATA_FORMAT)

      filters = channels_out
      if bottleneck:
        filters = channels_out // 4

154
      input_tensor = tf.compat.v1.get_variable(
155
          "input_tensor", dtype=tf.float32,
156
          initializer=tf.random.uniform((batch_size, width, width, channels),
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
                                        maxval=1)
      )

      layer = block_fn(inputs=input_tensor, filters=filters, training=True,
                       projection_shortcut=projection_shortcut, strides=strides,
                       data_format=DATA_FORMAT)

    self._save_or_test_ops(
        name=name, graph=g, ops_to_eval=[input_tensor, layer], test=test,
        correctness_function=self.default_correctness_function
    )

  def test_batch_norm(self):
    self._batch_norm_ops(test=True)

  def test_block_0(self):
    self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[0])

  def test_block_1(self):
    self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[1])

  def test_block_2(self):
    self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[2])

  def test_block_3(self):
    self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[3])

  def test_block_4(self):
    self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[4])

  def test_block_5(self):
    self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[5])

  def test_block_6(self):
    self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[6])

  def test_block_7(self):
    self._resnet_block_ops(test=True, batch_size=BATCH_SIZE, **BLOCK_TESTS[7])

  def regenerate(self):
    """Create reference data files for ResNet layer tests."""
    self._batch_norm_ops(test=False)
    for block_params in BLOCK_TESTS:
      self._resnet_block_ops(test=False, batch_size=BATCH_SIZE, **block_params)


if __name__ == "__main__":
  reference_data.main(argv=sys.argv, test_class=BaseTest)