train.py 3.46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Trains a GANEstimator on MNIST data."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

import numpy as np
import scipy.misc
25
from six.moves import xrange
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import tensorflow as tf

from mnist import data_provider
from mnist import networks

tfgan = tf.contrib.gan
flags = tf.flags

flags.DEFINE_integer('batch_size', 32,
                     'The number of images in each train batch.')

flags.DEFINE_integer('max_number_of_steps', 20000,
                     'The maximum number of gradient steps.')

flags.DEFINE_integer(
    'noise_dims', 64, 'Dimensions of the generator noise vector')

flags.DEFINE_string('dataset_dir', None, 'Location of data.')

flags.DEFINE_string('eval_dir', '/tmp/mnist-estimator/',
                    'Directory where the results are saved to.')

FLAGS = flags.FLAGS


def _get_train_input_fn(batch_size, noise_dims, dataset_dir=None,
                        num_threads=4):
  def train_input_fn():
    with tf.device('/cpu:0'):
      images, _, _ = data_provider.provide_data(
          'train', batch_size, dataset_dir, num_threads=num_threads)
    noise = tf.random_normal([batch_size, noise_dims])
    return noise, images
  return train_input_fn


def _get_predict_input_fn(batch_size, noise_dims):
  def predict_input_fn():
    noise = tf.random_normal([batch_size, noise_dims])
    return noise
  return predict_input_fn


def main(_):
  # Initialize GANEstimator with options and hyperparameters.
  gan_estimator = tfgan.estimator.GANEstimator(
      generator_fn=networks.unconditional_generator,
      discriminator_fn=networks.unconditional_discriminator,
      generator_loss_fn=tfgan.losses.wasserstein_generator_loss,
      discriminator_loss_fn=tfgan.losses.wasserstein_discriminator_loss,
      generator_optimizer=tf.train.AdamOptimizer(0.001, 0.5),
      discriminator_optimizer=tf.train.AdamOptimizer(0.0001, 0.5),
      add_summaries=tfgan.estimator.SummaryType.IMAGES)

  # Train estimator.
  train_input_fn = _get_train_input_fn(
      FLAGS.batch_size, FLAGS.noise_dims, FLAGS.dataset_dir)
  gan_estimator.train(train_input_fn, max_steps=FLAGS.max_number_of_steps)

  # Run inference.
  predict_input_fn = _get_predict_input_fn(36, FLAGS.noise_dims)
  prediction_iterable = gan_estimator.predict(predict_input_fn)
  predictions = [prediction_iterable.next() for _ in xrange(36)]

  # Nicely tile.
  image_rows = [np.concatenate(predictions[i:i+6], axis=0) for i in
                range(0, 36, 6)]
  tiled_image = np.concatenate(image_rows, axis=1)

  # Write to disk.
  if not tf.gfile.Exists(FLAGS.eval_dir):
    tf.gfile.MakeDirs(FLAGS.eval_dir)
  scipy.misc.imsave(os.path.join(FLAGS.eval_dir, 'unconditional_gan.png'),
                    np.squeeze(tiled_image, axis=2))


if __name__ == '__main__':
  tf.app.run()