detection.py 5.3 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Detection input and model functions for serving/inference."""

import tensorflow as tf

from official.vision.beta import configs
from official.vision.beta.modeling import factory
from official.vision.beta.ops import anchor
from official.vision.beta.ops import preprocess_ops
from official.vision.beta.serving import export_base


MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255)
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255)


class DetectionModule(export_base.ExportModule):
  """Detection Module."""

  def build_model(self):

    if self._batch_size is None:
      ValueError("batch_size can't be None for detection models")
    if not self._params.task.model.detection_generator.use_batched_nms:
      ValueError('Only batched_nms is supported.')
    input_specs = tf.keras.layers.InputSpec(shape=[self._batch_size] +
                                            self._input_image_size + [3])

    if isinstance(self._params.task.model, configs.maskrcnn.MaskRCNN):
      self._model = factory.build_maskrcnn(
          input_specs=input_specs,
          model_config=self._params.task.model)
    elif isinstance(self._params.task.model, configs.retinanet.RetinaNet):
      self._model = factory.build_retinanet(
          input_specs=input_specs,
          model_config=self._params.task.model)
    else:
      raise ValueError('Detection module not implemented for {} model.'.format(
          type(self._params.task.model)))

    return self._model

  def _build_inputs(self, image):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
58
    """Builds detection model inputs for serving."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    model_params = self._params.task.model
    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image,
                                           offset=MEAN_RGB,
                                           scale=STDDEV_RGB)

    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        self._input_image_size,
        padded_size=preprocess_ops.compute_padded_size(
            self._input_image_size, 2**model_params.max_level),
        aug_scale_min=1.0,
        aug_scale_max=1.0)

    input_anchor = anchor.build_anchor_generator(
        min_level=model_params.min_level,
        max_level=model_params.max_level,
        num_scales=model_params.anchor.num_scales,
        aspect_ratios=model_params.anchor.aspect_ratios,
        anchor_size=model_params.anchor.anchor_size)
    anchor_boxes = input_anchor(image_size=(self._input_image_size[0],
                                            self._input_image_size[1]))

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
82
    return image, anchor_boxes, image_info
Abdullah Rashwan's avatar
Abdullah Rashwan committed
83
84
85
86
87
88
89

  def _run_inference_on_image_tensors(self, images: tf.Tensor):
    """Cast image to float and run inference.

    Args:
      images: uint8 Tensor of shape [batch_size, None, None, 3]
    Returns:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
90
      Tensor holding detection output logits.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    """
    model_params = self._params.task.model
    with tf.device('cpu:0'):
      images = tf.cast(images, dtype=tf.float32)

      # Tensor Specs for map_fn outputs (images, anchor_boxes, and image_info).
      images_spec = tf.TensorSpec(shape=self._input_image_size + [3],
                                  dtype=tf.float32)

      num_anchors = model_params.anchor.num_scales * len(
          model_params.anchor.aspect_ratios) * 4
      anchor_shapes = []
      for level in range(model_params.min_level, model_params.max_level + 1):
        anchor_level_spec = tf.TensorSpec(
            shape=[
                self._input_image_size[0] // 2**level,
                self._input_image_size[1] // 2**level, num_anchors
            ],
            dtype=tf.float32)
        anchor_shapes.append((str(level), anchor_level_spec))

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
112
      image_info_spec = tf.TensorSpec(shape=[4, 2], dtype=tf.float32)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
113

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
114
      images, anchor_boxes, image_info = tf.nest.map_structure(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
115
116
117
118
119
          tf.identity,
          tf.map_fn(
              self._build_inputs,
              elems=images,
              fn_output_signature=(images_spec, dict(anchor_shapes),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
120
                                   image_info_spec),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
121
122
              parallel_iterations=32))

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
123
124
    input_image_shape = image_info[:, 1, :]

Abdullah Rashwan's avatar
Abdullah Rashwan committed
125
126
    detections = self._model.call(
        images=images,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
127
        image_shape=input_image_shape,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
128
129
130
131
132
133
134
        anchor_boxes=anchor_boxes,
        training=False)

    final_outputs = {
        'detection_boxes': detections['detection_boxes'],
        'detection_scores': detections['detection_scores'],
        'detection_classes': detections['detection_classes'],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
135
136
        'num_detections': detections['num_detections'],
        'image_info': image_info
Abdullah Rashwan's avatar
Abdullah Rashwan committed
137
138
    }
    if 'detection_masks' in detections.keys():
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
139
      final_outputs['detection_masks'] = detections['detection_masks']
Abdullah Rashwan's avatar
Abdullah Rashwan committed
140
141

    return final_outputs