maskrcnn_model.py 6.42 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""Mask R-CNN model."""

# Import libraries
import tensorflow as tf

from official.vision.beta.ops import box_ops


@tf.keras.utils.register_keras_serializable(package='Vision')
class MaskRCNNModel(tf.keras.Model):
  """The Mask R-CNN model."""

  def __init__(self,
               backbone,
               decoder,
               rpn_head,
               detection_head,
               roi_generator,
               roi_sampler,
               roi_aligner,
               detection_generator,
               mask_head=None,
               mask_sampler=None,
               mask_roi_aligner=None,
               **kwargs):
    """Initializes the Mask R-CNN model.

    Args:
      backbone: `tf.keras.Model`, the backbone network.
      decoder: `tf.keras.Model`, the decoder network.
      rpn_head: the RPN head.
      detection_head: the detection head.
      roi_generator: the ROI generator.
      roi_sampler: the ROI sampler.
      roi_aligner: the ROI aligner.
      detection_generator: the detection generator.
      mask_head: the mask head.
      mask_sampler: the mask sampler.
      mask_roi_aligner: the ROI alginer for mask prediction.
      **kwargs: keyword arguments to be passed.
    """
    super(MaskRCNNModel, self).__init__(**kwargs)
    self._config_dict = {
        'backbone': backbone,
        'decoder': decoder,
        'rpn_head': rpn_head,
        'detection_head': detection_head,
        'roi_generator': roi_generator,
        'roi_sampler': roi_sampler,
        'roi_aligner': roi_aligner,
        'detection_generator': detection_generator,
        'mask_head': mask_head,
        'mask_sampler': mask_sampler,
        'mask_roi_aligner': mask_roi_aligner,
    }
    self.backbone = backbone
    self.decoder = decoder
    self.rpn_head = rpn_head
    self.detection_head = detection_head
    self.roi_generator = roi_generator
    self.roi_sampler = roi_sampler
    self.roi_aligner = roi_aligner
    self.detection_generator = detection_generator
    self._include_mask = mask_head is not None
    self.mask_head = mask_head
    if self._include_mask and mask_sampler is None:
      raise ValueError('`mask_sampler` is not provided in Mask R-CNN.')
    self.mask_sampler = mask_sampler
    if self._include_mask and mask_roi_aligner is None:
      raise ValueError('`mask_roi_aligner` is not provided in Mask R-CNN.')
    self.mask_roi_aligner = mask_roi_aligner

  def call(self,
           images,
           image_shape,
           anchor_boxes=None,
           gt_boxes=None,
           gt_classes=None,
           gt_masks=None,
           training=None):
    model_outputs = {}

    # Feature extraction.
    features = self.backbone(images)
    if self.decoder:
      features = self.decoder(features)

    # Region proposal network.
    rpn_scores, rpn_boxes = self.rpn_head(features)

    model_outputs.update({
        'rpn_boxes': rpn_boxes,
        'rpn_scores': rpn_scores
    })

    # Generate RoIs.
    rois, _ = self.roi_generator(
        rpn_boxes, rpn_scores, anchor_boxes, image_shape, training)

    if training:
      rois = tf.stop_gradient(rois)

      rois, matched_gt_boxes, matched_gt_classes, matched_gt_indices = (
          self.roi_sampler(rois, gt_boxes, gt_classes))
      # Assign target for the 2nd stage classification.
      box_targets = box_ops.encode_boxes(
          matched_gt_boxes, rois, weights=[10.0, 10.0, 5.0, 5.0])
      # If the target is background, the box target is set to all 0s.
      box_targets = tf.where(
          tf.tile(
              tf.expand_dims(tf.equal(matched_gt_classes, 0), axis=-1),
              [1, 1, 4]),
          tf.zeros_like(box_targets),
          box_targets)
      model_outputs.update({
          'class_targets': matched_gt_classes,
          'box_targets': box_targets,
      })

    # RoI align.
    roi_features = self.roi_aligner(features, rois)

    # Detection head.
    raw_scores, raw_boxes = self.detection_head(roi_features)

    if training:
      model_outputs.update({
          'class_outputs': raw_scores,
          'box_outputs': raw_boxes,
      })
    else:
      # Post-processing.
      detections = self.detection_generator(
          raw_boxes, raw_scores, rois, image_shape)
      model_outputs.update({
          'detection_boxes': detections['detection_boxes'],
          'detection_scores': detections['detection_scores'],
          'detection_classes': detections['detection_classes'],
          'num_detections': detections['num_detections'],
      })

    if not self._include_mask:
      return model_outputs

    if training:
      rois, roi_classes, roi_masks = self.mask_sampler(
          rois,
          matched_gt_boxes,
          matched_gt_classes,
          matched_gt_indices,
          gt_masks)
      roi_masks = tf.stop_gradient(roi_masks)

      model_outputs.update({
          'mask_class_targets': roi_classes,
          'mask_targets': roi_masks,
      })
    else:
      rois = model_outputs['detection_boxes']
      roi_classes = model_outputs['detection_classes']

    # Mask RoI align.
    mask_roi_features = self.mask_roi_aligner(features, rois)

    # Mask head.
    raw_masks = self.mask_head([mask_roi_features, roi_classes])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
181

Abdullah Rashwan's avatar
Abdullah Rashwan committed
182
183
184
185
186
187
188
189
190
191
    if training:
      model_outputs.update({
          'mask_outputs': raw_masks,
      })
    else:
      model_outputs.update({
          'detection_masks': tf.math.sigmoid(raw_masks),
      })
    return model_outputs

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
  @property
  def checkpoint_items(self):
    """Returns a dictionary of items to be additionally checkpointed."""
    items = dict(
        backbone=self.backbone,
        rpn_head=self.rpn_head,
        detection_head=self.detection_head)
    if self.decoder is not None:
      items.update(decoder=self.decoder)
    if self._include_mask:
      items.update(mask_head=self.mask_head)

    return items

Abdullah Rashwan's avatar
Abdullah Rashwan committed
206
207
208
209
210
211
  def get_config(self):
    return self._config_dict

  @classmethod
  def from_config(cls, config):
    return cls(**config)