fpn.py 6.71 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Fan Yang's avatar
Fan Yang committed
15
"""Contains the definitions of Feature Pyramid Networks (FPN)."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
17
18
19
20
21
22
23
24
25

# Import libraries
import tensorflow as tf

from official.modeling import tf_utils
from official.vision.beta.ops import spatial_transform_ops


@tf.keras.utils.register_keras_serializable(package='Vision')
class FPN(tf.keras.Model):
Fan Yang's avatar
Fan Yang committed
26
27
28
29
30
31
32
33
  """Creates a Feature Pyramid Network (FPN).

  This implemets the paper:
  Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and
  Serge Belongie.
  Feature Pyramid Networks for Object Detection.
  (https://arxiv.org/pdf/1612.03144)
  """
Abdullah Rashwan's avatar
Abdullah Rashwan committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

  def __init__(self,
               input_specs,
               min_level=3,
               max_level=7,
               num_filters=256,
               use_separable_conv=False,
               activation='relu',
               use_sync_bn=False,
               norm_momentum=0.99,
               norm_epsilon=0.001,
               kernel_initializer='VarianceScaling',
               kernel_regularizer=None,
               bias_regularizer=None,
               **kwargs):
Fan Yang's avatar
Fan Yang committed
49
    """Initializes a Feature Pyramid Network (FPN).
Abdullah Rashwan's avatar
Abdullah Rashwan committed
50
51

    Args:
Fan Yang's avatar
Fan Yang committed
52
      input_specs: A `dict` of input specifications. A dictionary consists of
Abdullah Rashwan's avatar
Abdullah Rashwan committed
53
        {level: TensorShape} from a backbone.
Fan Yang's avatar
Fan Yang committed
54
55
56
57
      min_level: An `int` of minimum level in FPN output feature maps.
      max_level: An `int` of maximum level in FPN output feature maps.
      num_filters: An `int` number of filters in FPN layers.
      use_separable_conv: A `bool`.  If True use separable convolution for
Abdullah Rashwan's avatar
Abdullah Rashwan committed
58
        convolution in FPN layers.
Fan Yang's avatar
Fan Yang committed
59
60
61
62
63
64
65
66
67
68
      activation: A `str` name of the activation function.
      use_sync_bn: A `bool`. If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      kernel_initializer: A `str` name of kernel_initializer for convolutional
        layers.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default is None.
      bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
      **kwargs: Additional keyword arguments to be passed.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    """
    self._config_dict = {
        'input_specs': input_specs,
        'min_level': min_level,
        'max_level': max_level,
        'num_filters': num_filters,
        'use_separable_conv': use_separable_conv,
        'activation': activation,
        'use_sync_bn': use_sync_bn,
        'norm_momentum': norm_momentum,
        'norm_epsilon': norm_epsilon,
        'kernel_initializer': kernel_initializer,
        'kernel_regularizer': kernel_regularizer,
        'bias_regularizer': bias_regularizer,
    }
    if use_separable_conv:
      conv2d = tf.keras.layers.SeparableConv2D
    else:
      conv2d = tf.keras.layers.Conv2D
    if use_sync_bn:
      norm = tf.keras.layers.experimental.SyncBatchNormalization
    else:
      norm = tf.keras.layers.BatchNormalization
    activation_fn = tf.keras.layers.Activation(
        tf_utils.get_activation(activation))

    # Build input feature pyramid.
    if tf.keras.backend.image_data_format() == 'channels_last':
      bn_axis = -1
    else:
      bn_axis = 1

    # Get input feature pyramid from backbone.
    inputs = self._build_input_pyramid(input_specs, min_level)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
103
    backbone_max_level = min(int(max(inputs.keys())), max_level)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
104
105
106
107

    # Build lateral connections.
    feats_lateral = {}
    for level in range(min_level, backbone_max_level + 1):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
108
      feats_lateral[str(level)] = conv2d(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
109
110
111
112
113
114
          filters=num_filters,
          kernel_size=1,
          padding='same',
          kernel_initializer=kernel_initializer,
          kernel_regularizer=kernel_regularizer,
          bias_regularizer=bias_regularizer)(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
115
              inputs[str(level)])
Abdullah Rashwan's avatar
Abdullah Rashwan committed
116
117

    # Build top-down path.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
118
    feats = {str(backbone_max_level): feats_lateral[str(backbone_max_level)]}
Abdullah Rashwan's avatar
Abdullah Rashwan committed
119
    for level in range(backbone_max_level - 1, min_level - 1, -1):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
120
121
      feats[str(level)] = spatial_transform_ops.nearest_upsampling(
          feats[str(level + 1)], 2) + feats_lateral[str(level)]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
122
123
124
125

    # TODO(xianzhi): consider to remove bias in conv2d.
    # Build post-hoc 3x3 convolution kernel.
    for level in range(min_level, backbone_max_level + 1):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
126
      feats[str(level)] = conv2d(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
127
128
129
130
131
132
133
          filters=num_filters,
          strides=1,
          kernel_size=3,
          padding='same',
          kernel_initializer=kernel_initializer,
          kernel_regularizer=kernel_regularizer,
          bias_regularizer=bias_regularizer)(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
134
              feats[str(level)])
Abdullah Rashwan's avatar
Abdullah Rashwan committed
135
136
137
138

    # TODO(xianzhi): consider to remove bias in conv2d.
    # Build coarser FPN levels introduced for RetinaNet.
    for level in range(backbone_max_level + 1, max_level + 1):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
139
      feats_in = feats[str(level - 1)]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
140
141
      if level > backbone_max_level + 1:
        feats_in = activation_fn(feats_in)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
142
      feats[str(level)] = conv2d(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
143
144
145
146
147
148
149
150
151
152
153
          filters=num_filters,
          strides=2,
          kernel_size=3,
          padding='same',
          kernel_initializer=kernel_initializer,
          kernel_regularizer=kernel_regularizer,
          bias_regularizer=bias_regularizer)(
              feats_in)

    # Apply batch norm layers.
    for level in range(min_level, max_level + 1):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
154
      feats[str(level)] = norm(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
155
          axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
156
              feats[str(level)])
Abdullah Rashwan's avatar
Abdullah Rashwan committed
157
158

    self._output_specs = {
Abdullah Rashwan's avatar
Abdullah Rashwan committed
159
        str(level): feats[str(level)].get_shape()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
160
161
162
163
164
165
166
        for level in range(min_level, max_level + 1)
    }

    super(FPN, self).__init__(inputs=inputs, outputs=feats, **kwargs)

  def _build_input_pyramid(self, input_specs, min_level):
    assert isinstance(input_specs, dict)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
167
    if min(input_specs.keys()) > str(min_level):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
      raise ValueError(
          'Backbone min level should be less or equal to FPN min level')

    inputs = {}
    for level, spec in input_specs.items():
      inputs[level] = tf.keras.Input(shape=spec[1:])
    return inputs

  def get_config(self):
    return self._config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs