efficientnet.py 11.1 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
16
17
18
19
20
"""Contains definitions of EfficientNet Networks."""

import math
# Import libraries
import tensorflow as tf
from official.modeling import tf_utils
Yeqing Li's avatar
Yeqing Li committed
21
from official.vision.beta.modeling.backbones import factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
22
from official.vision.beta.modeling.layers import nn_blocks
23
from official.vision.beta.modeling.layers import nn_layers
Abdullah Rashwan's avatar
Abdullah Rashwan committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

layers = tf.keras.layers

# The fixed EfficientNet-B0 architecture discovered by NAS.
# Each element represents a specification of a building block:
# (block_fn, block_repeats, kernel_size, strides, expand_ratio, in_filters,
# out_filters, is_output)
EN_B0_BLOCK_SPECS = [
    ('mbconv', 1, 3, 1, 1, 32, 16, False),
    ('mbconv', 2, 3, 2, 6, 16, 24, True),
    ('mbconv', 2, 5, 2, 6, 24, 40, True),
    ('mbconv', 3, 3, 2, 6, 40, 80, False),
    ('mbconv', 3, 5, 1, 6, 80, 112, True),
    ('mbconv', 4, 5, 2, 6, 112, 192, False),
    ('mbconv', 1, 3, 1, 6, 192, 320, True),
]

SCALING_MAP = {
    'b0': dict(width_scale=1.0, depth_scale=1.0),
    'b1': dict(width_scale=1.0, depth_scale=1.1),
    'b2': dict(width_scale=1.1, depth_scale=1.2),
    'b3': dict(width_scale=1.2, depth_scale=1.4),
    'b4': dict(width_scale=1.4, depth_scale=1.8),
    'b5': dict(width_scale=1.6, depth_scale=2.2),
    'b6': dict(width_scale=1.8, depth_scale=2.6),
    'b7': dict(width_scale=2.0, depth_scale=3.1),
}


def round_repeats(repeats, multiplier, skip=False):
Fan Yang's avatar
Fan Yang committed
54
  """Returns rounded number of filters based on depth multiplier."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
55
56
57
58
59
60
  if skip or not multiplier:
    return repeats
  return int(math.ceil(multiplier * repeats))


def block_spec_decoder(specs, width_scale, depth_scale):
Fan Yang's avatar
Fan Yang committed
61
  """Decodes and returns specs for a block."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
  decoded_specs = []
  for s in specs:
    s = s + (
        width_scale,
        depth_scale,
    )
    decoded_specs.append(BlockSpec(*s))
  return decoded_specs


class BlockSpec(object):
  """A container class that specifies the block configuration for MnasNet."""

  def __init__(self, block_fn, block_repeats, kernel_size, strides,
               expand_ratio, in_filters, out_filters, is_output, width_scale,
               depth_scale):
    self.block_fn = block_fn
    self.block_repeats = round_repeats(block_repeats, depth_scale)
    self.kernel_size = kernel_size
    self.strides = strides
    self.expand_ratio = expand_ratio
83
84
    self.in_filters = nn_layers.round_filters(in_filters, width_scale)
    self.out_filters = nn_layers.round_filters(out_filters, width_scale)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
85
86
87
88
89
    self.is_output = is_output


@tf.keras.utils.register_keras_serializable(package='Vision')
class EfficientNet(tf.keras.Model):
Fan Yang's avatar
Fan Yang committed
90
91
92
93
94
95
96
  """Creates an EfficientNet family model.

  This implements the EfficientNet model from:
    Mingxing Tan, Quoc V. Le.
    EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.
    (https://arxiv.org/pdf/1905.11946)
  """
Abdullah Rashwan's avatar
Abdullah Rashwan committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110

  def __init__(self,
               model_id,
               input_specs=layers.InputSpec(shape=[None, None, None, 3]),
               se_ratio=0.0,
               stochastic_depth_drop_rate=0.0,
               kernel_initializer='VarianceScaling',
               kernel_regularizer=None,
               bias_regularizer=None,
               activation='relu',
               use_sync_bn=False,
               norm_momentum=0.99,
               norm_epsilon=0.001,
               **kwargs):
Fan Yang's avatar
Fan Yang committed
111
    """Initializes an EfficientNet model.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
112
113

    Args:
Fan Yang's avatar
Fan Yang committed
114
115
116
117
118
119
120
121
122
123
      model_id: A `str` of model ID of EfficientNet.
      input_specs: A `tf.keras.layers.InputSpec` of the input tensor.
      se_ratio: A `float` of squeeze and excitation ratio for inverted
        bottleneck blocks.
      stochastic_depth_drop_rate: A `float` of drop rate for drop connect layer.
      kernel_initializer: A `str` for kernel initializer of convolutional
        layers.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
124
        Default to None.
Fan Yang's avatar
Fan Yang committed
125
126
127
128
129
      activation: A `str` of name of the activation function.
      use_sync_bn: If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      **kwargs: Additional keyword arguments to be passed.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    """
    self._model_id = model_id
    self._input_specs = input_specs
    self._se_ratio = se_ratio
    self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
    self._use_sync_bn = use_sync_bn
    self._activation = activation
    self._kernel_initializer = kernel_initializer
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    if use_sync_bn:
      self._norm = layers.experimental.SyncBatchNormalization
    else:
      self._norm = layers.BatchNormalization

    if tf.keras.backend.image_data_format() == 'channels_last':
      bn_axis = -1
    else:
      bn_axis = 1

    # Build EfficientNet.
    inputs = tf.keras.Input(shape=input_specs.shape[1:])
    width_scale = SCALING_MAP[model_id]['width_scale']
    depth_scale = SCALING_MAP[model_id]['depth_scale']

    # Build stem.
    x = layers.Conv2D(
159
        filters=nn_layers.round_filters(32, width_scale),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        kernel_size=3,
        strides=2,
        use_bias=False,
        padding='same',
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)(
            inputs)
    x = self._norm(
        axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
            x)
    x = tf_utils.get_activation(activation)(x)

    # Build intermediate blocks.
    endpoints = {}
    endpoint_level = 2
    decoded_specs = block_spec_decoder(EN_B0_BLOCK_SPECS, width_scale,
                                       depth_scale)

    for i, specs in enumerate(decoded_specs):
      x = self._block_group(
          inputs=x, specs=specs, name='block_group_{}'.format(i))
      if specs.is_output:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
183
        endpoints[str(endpoint_level)] = x
Abdullah Rashwan's avatar
Abdullah Rashwan committed
184
185
186
187
188
189
190
        endpoint_level += 1

    # Build output specs for downstream tasks.
    self._output_specs = {l: endpoints[l].get_shape for l in endpoints.keys()}

    # Build the final conv for classification.
    x = layers.Conv2D(
191
        filters=nn_layers.round_filters(1280, width_scale),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
192
193
194
195
196
197
198
199
200
201
202
        kernel_size=1,
        strides=1,
        use_bias=False,
        padding='same',
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)(
            x)
    x = self._norm(
        axis=bn_axis, momentum=norm_momentum, epsilon=norm_epsilon)(
            x)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
203
    endpoints[str(endpoint_level)] = tf_utils.get_activation(activation)(x)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
204
205
206
207
208
209
210
211

    super(EfficientNet, self).__init__(
        inputs=inputs, outputs=endpoints, **kwargs)

  def _block_group(self, inputs, specs, name='block_group'):
    """Creates one group of blocks for the EfficientNet model.

    Args:
Fan Yang's avatar
Fan Yang committed
212
213
214
      inputs: A `tf.Tensor` of size `[batch, channels, height, width]`.
      specs: The specifications for one inverted bottleneck block group.
      name: A `str` name for the block.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
215
216

    Returns:
Fan Yang's avatar
Fan Yang committed
217
      The output `tf.Tensor` of the block layer.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    """
    if specs.block_fn == 'mbconv':
      block_fn = nn_blocks.InvertedBottleneckBlock
    else:
      raise ValueError('Block func {} not supported.'.format(specs.block_fn))

    x = block_fn(
        in_filters=specs.in_filters,
        out_filters=specs.out_filters,
        expand_ratio=specs.expand_ratio,
        strides=specs.strides,
        kernel_size=specs.kernel_size,
        se_ratio=self._se_ratio,
        stochastic_depth_drop_rate=self._stochastic_depth_drop_rate,
        kernel_initializer=self._kernel_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activation=self._activation,
        use_sync_bn=self._use_sync_bn,
        norm_momentum=self._norm_momentum,
        norm_epsilon=self._norm_epsilon)(
            inputs)

    for _ in range(1, specs.block_repeats):
      x = block_fn(
          in_filters=specs.out_filters,  # Set 'in_filters' to 'out_filters'.
          out_filters=specs.out_filters,
          expand_ratio=specs.expand_ratio,
          strides=1,  # Fix strides to 1.
          kernel_size=specs.kernel_size,
          se_ratio=self._se_ratio,
          stochastic_depth_drop_rate=self._stochastic_depth_drop_rate,
          kernel_initializer=self._kernel_initializer,
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
          activation=self._activation,
          use_sync_bn=self._use_sync_bn,
          norm_momentum=self._norm_momentum,
          norm_epsilon=self._norm_epsilon)(
              x)

    return tf.identity(x, name=name)

  def get_config(self):
    config_dict = {
        'model_id': self._model_id,
        'se_ratio': self._se_ratio,
        'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'activation': self._activation,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon
    }
    return config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def output_specs(self):
    """A dict of {level: TensorShape} pairs for the model output."""
    return self._output_specs
Yeqing Li's avatar
Yeqing Li committed
284
285
286
287
288
289
290


@factory.register_backbone_builder('efficientnet')
def build_efficientnet(
    input_specs: tf.keras.layers.InputSpec,
    model_config,
    l2_regularizer: tf.keras.regularizers.Regularizer = None) -> tf.keras.Model:
Fan Yang's avatar
Fan Yang committed
291
  """Builds EfficientNet backbone from a config."""
Yeqing Li's avatar
Yeqing Li committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
  backbone_type = model_config.backbone.type
  backbone_cfg = model_config.backbone.get()
  norm_activation_config = model_config.norm_activation
  assert backbone_type == 'efficientnet', (f'Inconsistent backbone type '
                                           f'{backbone_type}')

  return EfficientNet(
      model_id=backbone_cfg.model_id,
      input_specs=input_specs,
      stochastic_depth_drop_rate=backbone_cfg.stochastic_depth_drop_rate,
      se_ratio=backbone_cfg.se_ratio,
      activation=norm_activation_config.activation,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      kernel_regularizer=l2_regularizer)