utils.py 1.72 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
16
17
18
19
20
21
22
23
24
25
"""Data loader utils."""

# Import libraries
import tensorflow as tf

from official.vision.beta.ops import preprocess_ops


def process_source_id(source_id):
  """Processes source_id to the right format."""
  if source_id.dtype == tf.string:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
    source_id = tf.cast(tf.strings.to_number(source_id), tf.int64)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
27
28
29
  with tf.control_dependencies([source_id]):
    source_id = tf.cond(
        pred=tf.equal(tf.size(input=source_id), 0),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
30
        true_fn=lambda: tf.cast(tf.constant(-1), tf.int64),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
        false_fn=lambda: tf.identity(source_id))
  return source_id


def pad_groundtruths_to_fixed_size(groundtruths, size):
  """Pads the first dimension of groundtruths labels to the fixed size."""
  groundtruths['boxes'] = preprocess_ops.clip_or_pad_to_fixed_size(
      groundtruths['boxes'], size, -1)
  groundtruths['is_crowds'] = preprocess_ops.clip_or_pad_to_fixed_size(
      groundtruths['is_crowds'], size, 0)
  groundtruths['areas'] = preprocess_ops.clip_or_pad_to_fixed_size(
      groundtruths['areas'], size, -1)
  groundtruths['classes'] = preprocess_ops.clip_or_pad_to_fixed_size(
      groundtruths['classes'], size, -1)
  return groundtruths