"vscode:/vscode.git/clone" did not exist on "45d6592d4053fe8b2b8dc9440f64c900de040d09"
classification_input.py 5.39 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
"""Classification decoder and parser."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
16
from typing import List, Optional
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
18
19
20
21
# Import libraries
import tensorflow as tf

from official.vision.beta.dataloaders import decoder
from official.vision.beta.dataloaders import parser
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
from official.vision.beta.ops import augment
Abdullah Rashwan's avatar
Abdullah Rashwan committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from official.vision.beta.ops import preprocess_ops

MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255)
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255)


class Decoder(decoder.Decoder):
  """A tf.Example decoder for classification task."""

  def __init__(self):
    self._keys_to_features = {
        'image/encoded': tf.io.FixedLenFeature((), tf.string, default_value=''),
        'image/class/label': (
            tf.io.FixedLenFeature((), tf.int64, default_value=-1))
    }

  def decode(self, serialized_example):
    return tf.io.parse_single_example(
        serialized_example, self._keys_to_features)


class Parser(parser.Parser):
  """Parser to parse an image and its annotations into a dictionary of tensors."""

  def __init__(self,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
48
49
50
51
               output_size: List[int],
               num_classes: float,
               aug_rand_hflip: bool = True,
               aug_policy: Optional[str] = None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
52
               randaug_magnitude: Optional[int] = 10,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
53
               dtype: str = 'float32'):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
54
55
56
    """Initializes parameters for parsing annotations in the dataset.

    Args:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
57
      output_size: `Tensor` or `list` for [height, width] of output image. The
Abdullah Rashwan's avatar
Abdullah Rashwan committed
58
59
60
61
        output_size should be divided by the largest feature stride 2^max_level.
      num_classes: `float`, number of classes.
      aug_rand_hflip: `bool`, if True, augment training with random
        horizontal flip.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
62
      aug_policy: `str`, augmentation policies. None, 'autoaug', or 'randaug'.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
63
      randaug_magnitude: `int`, magnitude of the randaugment policy.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
      dtype: `str`, cast output image in dtype. It can be 'float32', 'float16',
        or 'bfloat16'.
    """
    self._output_size = output_size
    self._aug_rand_hflip = aug_rand_hflip
    self._num_classes = num_classes
    if dtype == 'float32':
      self._dtype = tf.float32
    elif dtype == 'float16':
      self._dtype = tf.float16
    elif dtype == 'bfloat16':
      self._dtype = tf.bfloat16
    else:
      raise ValueError('dtype {!r} is not supported!'.format(dtype))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
78
79
80
81
    if aug_policy:
      if aug_policy == 'autoaug':
        self._augmenter = augment.AutoAugment()
      elif aug_policy == 'randaug':
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
82
83
        self._augmenter = augment.RandAugment(
            num_layers=2, magnitude=randaug_magnitude)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
84
85
86
87
88
      else:
        raise ValueError(
            'Augmentation policy {} not supported.'.format(aug_policy))
    else:
      self._augmenter = None
Abdullah Rashwan's avatar
Abdullah Rashwan committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

  def _parse_train_data(self, decoded_tensors):
    """Parses data for training."""
    label = tf.cast(decoded_tensors['image/class/label'], dtype=tf.int32)

    image_bytes = decoded_tensors['image/encoded']
    image_shape = tf.image.extract_jpeg_shape(image_bytes)

    # Crops image.
    # TODO(pengchong): support image format other than JPEG.
    cropped_image = preprocess_ops.random_crop_image_v2(
        image_bytes, image_shape)
    image = tf.cond(
        tf.reduce_all(tf.equal(tf.shape(cropped_image), image_shape)),
        lambda: preprocess_ops.center_crop_image_v2(image_bytes, image_shape),
        lambda: cropped_image)

    if self._aug_rand_hflip:
      image = tf.image.random_flip_left_right(image)

    # Resizes image.
    image = tf.image.resize(
        image, self._output_size, method=tf.image.ResizeMethod.BILINEAR)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
113
114
115
116
    # Apply autoaug or randaug.
    if self._augmenter is not None:
      image = self._augmenter.distort(image)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image,
                                           offset=MEAN_RGB,
                                           scale=STDDEV_RGB)

    # Convert image to self._dtype.
    image = tf.image.convert_image_dtype(image, self._dtype)

    return image, label

  def _parse_eval_data(self, decoded_tensors):
    """Parses data for evaluation."""
    label = tf.cast(decoded_tensors['image/class/label'], dtype=tf.int32)
    image_bytes = decoded_tensors['image/encoded']
    image_shape = tf.image.extract_jpeg_shape(image_bytes)

    # Center crops and resizes image.
    image = preprocess_ops.center_crop_image_v2(image_bytes, image_shape)

    image = tf.image.resize(
        image, self._output_size, method=tf.image.ResizeMethod.BILINEAR)

    image = tf.reshape(image, [self._output_size[0], self._output_size[1], 3])

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image,
                                           offset=MEAN_RGB,
                                           scale=STDDEV_RGB)

    # Convert image to self._dtype.
    image = tf.image.convert_image_dtype(image, self._dtype)

    return image, label