video_input.py 12.8 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Parser for video and label datasets."""

Yeqing Li's avatar
Yeqing Li committed
18
from typing import Dict, Optional, Tuple, Union
Abdullah Rashwan's avatar
Abdullah Rashwan committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

from absl import logging
import tensorflow as tf

from official.vision.beta.configs import video_classification as exp_cfg
from official.vision.beta.dataloaders import decoder
from official.vision.beta.dataloaders import parser
from official.vision.beta.ops import preprocess_ops_3d

IMAGE_KEY = 'image/encoded'
LABEL_KEY = 'clip/label/index'


def _process_image(image: tf.Tensor,
                   is_training: bool = True,
                   num_frames: int = 32,
                   stride: int = 1,
                   num_test_clips: int = 1,
Yin Cui's avatar
Yin Cui committed
37
38
39
                   min_resize: int = 256,
                   crop_size: int = 224,
                   num_crops: int = 1,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
40
                   zero_centering_image: bool = False,
Yeqing Li's avatar
Yeqing Li committed
41
42
43
44
                   min_aspect_ratio: float = 0.5,
                   max_aspect_ratio: float = 2,
                   min_area_ratio: float = 0.49,
                   max_area_ratio: float = 1.0,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
                   seed: Optional[int] = None) -> tf.Tensor:
  """Processes a serialized image tensor.

  Args:
    image: Input Tensor of shape [timesteps] and type tf.string of serialized
      frames.
    is_training: Whether or not in training mode. If True, random sample, crop
      and left right flip is used.
    num_frames: Number of frames per subclip.
    stride: Temporal stride to sample frames.
    num_test_clips: Number of test clips (1 by default). If more than 1, this
      will sample multiple linearly spaced clips within each video at test time.
      If 1, then a single clip in the middle of the video is sampled. The clips
      are aggreagated in the batch dimension.
    min_resize: Frames are resized so that min(height, width) is min_resize.
    crop_size: Final size of the frame after cropping the resized frames. Both
      height and width are the same.
Yin Cui's avatar
Yin Cui committed
62
    num_crops: Number of crops to perform on the resized frames.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
63
64
    zero_centering_image: If True, frames are normalized to values in [-1, 1].
      If False, values in [0, 1].
Yeqing Li's avatar
Yeqing Li committed
65
66
67
68
    min_aspect_ratio: The minimum aspect range for cropping.
    max_aspect_ratio: The maximum aspect range for cropping.
    min_area_ratio: The minimum area range for cropping.
    max_area_ratio: The maximum area range for cropping.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    seed: A deterministic seed to use when sampling.

  Returns:
    Processed frames. Tensor of shape
      [num_frames * num_test_clips, crop_size, crop_size, 3].
  """
  # Validate parameters.
  if is_training and num_test_clips != 1:
    logging.warning(
        '`num_test_clips` %d is ignored since `is_training` is `True`.',
        num_test_clips)

  # Temporal sampler.
  if is_training:
    # Sample random clip.
    image = preprocess_ops_3d.sample_sequence(image, num_frames, True, stride,
                                              seed)
  elif num_test_clips > 1:
    # Sample linspace clips.
    image = preprocess_ops_3d.sample_linspace_sequence(image, num_test_clips,
                                                       num_frames, stride)
  else:
    # Sample middle clip.
    image = preprocess_ops_3d.sample_sequence(image, num_frames, False, stride)

  # Decode JPEG string to tf.uint8.
  image = preprocess_ops_3d.decode_jpeg(image, 3)

  if is_training:
Yin Cui's avatar
Yin Cui committed
98
99
    # Standard image data augmentation: random resized crop and random flip.
    image = preprocess_ops_3d.random_crop_resize(
Yeqing Li's avatar
Yeqing Li committed
100
101
102
        image, crop_size, crop_size, num_frames, 3,
        (min_aspect_ratio, max_aspect_ratio),
        (min_area_ratio, max_area_ratio))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
103
104
    image = preprocess_ops_3d.random_flip_left_right(image, seed)
  else:
Yin Cui's avatar
Yin Cui committed
105
106
    # Resize images (resize happens only if necessary to save compute).
    image = preprocess_ops_3d.resize_smallest(image, min_resize)
Yin Cui's avatar
Yin Cui committed
107
108
109
    # Crop of the frames.
    image = preprocess_ops_3d.crop_image(image, crop_size, crop_size, False,
                                         num_crops)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
110
111
112
113
114
115
116
117

  # Cast the frames in float32, normalizing according to zero_centering_image.
  return preprocess_ops_3d.normalize_image(image, zero_centering_image)


def _postprocess_image(image: tf.Tensor,
                       is_training: bool = True,
                       num_frames: int = 32,
Yin Cui's avatar
Yin Cui committed
118
119
                       num_test_clips: int = 1,
                       num_test_crops: int = 1) -> tf.Tensor:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
120
121
122
123
124
125
126
127
128
129
130
131
132
  """Processes a batched Tensor of frames.

  The same parameters used in process should be used here.

  Args:
    image: Input Tensor of shape [batch, timesteps, height, width, 3].
    is_training: Whether or not in training mode. If True, random sample, crop
      and left right flip is used.
    num_frames: Number of frames per subclip.
    num_test_clips: Number of test clips (1 by default). If more than 1, this
      will sample multiple linearly spaced clips within each video at test time.
      If 1, then a single clip in the middle of the video is sampled. The clips
      are aggreagated in the batch dimension.
Yin Cui's avatar
Yin Cui committed
133
134
135
    num_test_crops: Number of test crops (1 by default). If more than 1, there
      are multiple crops for each clip at test time. If 1, there is a single
      central crop. The crops are aggreagated in the batch dimension.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
136
137
138

  Returns:
    Processed frames. Tensor of shape
Yin Cui's avatar
Yin Cui committed
139
      [batch * num_test_clips * num_test_crops, num_frames, height, width, 3].
Abdullah Rashwan's avatar
Abdullah Rashwan committed
140
  """
Yin Cui's avatar
Yin Cui committed
141
142
143
144
145
  num_views = num_test_clips * num_test_crops
  if num_views > 1 and not is_training:
    # In this case, multiple views are merged together in batch dimenstion which
    # will be batch * num_views.
    image = tf.reshape(image, [-1, num_frames] + image.shape[2:].as_list())
Abdullah Rashwan's avatar
Abdullah Rashwan committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

  return image


def _process_label(label: tf.Tensor,
                   one_hot_label: bool = True,
                   num_classes: Optional[int] = None) -> tf.Tensor:
  """Processes label Tensor."""
  # Validate parameters.
  if one_hot_label and not num_classes:
    raise ValueError(
        '`num_classes` should be given when requesting one hot label.')

  # Cast to tf.int32.
  label = tf.cast(label, dtype=tf.int32)

  if one_hot_label:
    # Replace label index by one hot representation.
    label = tf.one_hot(label, num_classes)
Yeqing Li's avatar
Yeqing Li committed
165
166
167
168
169
    if len(label.shape.as_list()) > 1:
      label = tf.reduce_sum(label, axis=0)
    if num_classes == 1:
      # The trick for single label.
      label = 1 - label
Abdullah Rashwan's avatar
Abdullah Rashwan committed
170
171
172
173
174
175
176
177

  return label


class Decoder(decoder.Decoder):
  """A tf.Example decoder for classification task."""

  def __init__(self, image_key: str = IMAGE_KEY, label_key: str = LABEL_KEY):
Yeqing Li's avatar
Yeqing Li committed
178
179
    self._image_key = image_key
    self._label_key = label_key
Abdullah Rashwan's avatar
Abdullah Rashwan committed
180
181
    self._context_description = {
        # One integer stored in context.
Yeqing Li's avatar
Yeqing Li committed
182
        self._label_key: tf.io.VarLenFeature(tf.int64),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
183
184
185
186
187
188
    }
    self._sequence_description = {
        # Each image is a string encoding JPEG.
        self._image_key: tf.io.FixedLenSequenceFeature((), tf.string),
    }

Yeqing Li's avatar
Yeqing Li committed
189
190
191
192
193
194
195
196
197
198
199
200
  def add_feature(self, feature_name: str,
                  feature_type: Union[tf.io.VarLenFeature,
                                      tf.io.FixedLenFeature,
                                      tf.io.FixedLenSequenceFeature]):
    self._sequence_description[feature_name] = feature_type

  def add_context(self, feature_name: str,
                  feature_type: Union[tf.io.VarLenFeature,
                                      tf.io.FixedLenFeature,
                                      tf.io.FixedLenSequenceFeature]):
    self._context_description[feature_name] = feature_type

Abdullah Rashwan's avatar
Abdullah Rashwan committed
201
202
  def decode(self, serialized_example):
    """Parses a single tf.Example into image and label tensors."""
Yeqing Li's avatar
Yeqing Li committed
203
    result = {}
Abdullah Rashwan's avatar
Abdullah Rashwan committed
204
205
206
    context, sequences = tf.io.parse_single_sequence_example(
        serialized_example, self._context_description,
        self._sequence_description)
Yeqing Li's avatar
Yeqing Li committed
207
208
209
210
211
212
    result.update(context)
    result.update(sequences)
    for key, value in result.items():
      if isinstance(value, tf.SparseTensor):
        result[key] = tf.sparse.to_dense(value)
    return result
Abdullah Rashwan's avatar
Abdullah Rashwan committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226


class Parser(parser.Parser):
  """Parses a video and label dataset."""

  def __init__(self,
               input_params: exp_cfg.DataConfig,
               image_key: str = IMAGE_KEY,
               label_key: str = LABEL_KEY):
    self._num_frames = input_params.feature_shape[0]
    self._stride = input_params.temporal_stride
    self._num_test_clips = input_params.num_test_clips
    self._min_resize = input_params.min_image_size
    self._crop_size = input_params.feature_shape[1]
Yin Cui's avatar
Yin Cui committed
227
    self._num_crops = input_params.num_test_crops
Abdullah Rashwan's avatar
Abdullah Rashwan committed
228
229
230
231
    self._one_hot_label = input_params.one_hot
    self._num_classes = input_params.num_classes
    self._image_key = image_key
    self._label_key = label_key
232
    self._dtype = tf.dtypes.as_dtype(input_params.dtype)
Yeqing Li's avatar
Yeqing Li committed
233
    self._output_audio = input_params.output_audio
Yeqing Li's avatar
Yeqing Li committed
234
235
236
237
    self._min_aspect_ratio = input_params.aug_min_aspect_ratio
    self._max_aspect_ratio = input_params.aug_max_aspect_ratio
    self._min_area_ratio = input_params.aug_min_area_ratio
    self._max_area_ratio = input_params.aug_max_area_ratio
Yeqing Li's avatar
Yeqing Li committed
238
239
240
    if self._output_audio:
      self._audio_feature = input_params.audio_feature
      self._audio_shape = input_params.audio_feature_shape
Abdullah Rashwan's avatar
Abdullah Rashwan committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254

  def _parse_train_data(
      self, decoded_tensors: Dict[str, tf.Tensor]
  ) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
    """Parses data for training."""
    # Process image and label.
    image = decoded_tensors[self._image_key]
    image = _process_image(
        image=image,
        is_training=True,
        num_frames=self._num_frames,
        stride=self._stride,
        num_test_clips=self._num_test_clips,
        min_resize=self._min_resize,
Yeqing Li's avatar
Yeqing Li committed
255
256
257
258
259
        crop_size=self._crop_size,
        min_aspect_ratio=self._min_aspect_ratio,
        max_aspect_ratio=self._max_aspect_ratio,
        min_area_ratio=self._min_area_ratio,
        max_area_ratio=self._max_area_ratio)
260
    image = tf.cast(image, dtype=self._dtype)
Yeqing Li's avatar
Yeqing Li committed
261
    features = {'image': image}
Yeqing Li's avatar
Yeqing Li committed
262
263

    label = decoded_tensors[self._label_key]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
264
265
    label = _process_label(label, self._one_hot_label, self._num_classes)

Yeqing Li's avatar
Yeqing Li committed
266
267
268
269
270
271
272
273
274
275
    if self._output_audio:
      audio = decoded_tensors[self._audio_feature]
      audio = tf.cast(audio, dtype=self._dtype)
      # TODO(yeqing): synchronize audio/video sampling. Especially randomness.
      audio = preprocess_ops_3d.sample_sequence(
          audio, self._audio_shape[0], random=False, stride=1)
      audio = tf.ensure_shape(audio, self._audio_shape)
      features['audio'] = audio

    return features, label
Abdullah Rashwan's avatar
Abdullah Rashwan committed
276
277
278
279
280
281
282
283
284
285
286
287
288

  def _parse_eval_data(
      self, decoded_tensors: Dict[str, tf.Tensor]
  ) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
    """Parses data for evaluation."""
    image = decoded_tensors[self._image_key]
    image = _process_image(
        image=image,
        is_training=False,
        num_frames=self._num_frames,
        stride=self._stride,
        num_test_clips=self._num_test_clips,
        min_resize=self._min_resize,
Yin Cui's avatar
Yin Cui committed
289
290
        crop_size=self._crop_size,
        num_crops=self._num_crops)
291
    image = tf.cast(image, dtype=self._dtype)
Yeqing Li's avatar
Yeqing Li committed
292
    features = {'image': image}
Yeqing Li's avatar
Yeqing Li committed
293
294

    label = decoded_tensors[self._label_key]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
295
296
    label = _process_label(label, self._one_hot_label, self._num_classes)

Yeqing Li's avatar
Yeqing Li committed
297
298
299
300
301
302
303
304
305
    if self._output_audio:
      audio = decoded_tensors[self._audio_feature]
      audio = tf.cast(audio, dtype=self._dtype)
      audio = preprocess_ops_3d.sample_sequence(
          audio, 20, random=False, stride=1)
      audio = tf.ensure_shape(audio, [20, 2048])
      features['audio'] = audio

    return features, label
Abdullah Rashwan's avatar
Abdullah Rashwan committed
306
307
308
309
310
311
312
313
314
315


class PostBatchProcessor(object):
  """Processes a video and label dataset which is batched."""

  def __init__(self, input_params: exp_cfg.DataConfig):
    self._is_training = input_params.is_training

    self._num_frames = input_params.feature_shape[0]
    self._num_test_clips = input_params.num_test_clips
Yin Cui's avatar
Yin Cui committed
316
    self._num_test_crops = input_params.num_test_crops
Abdullah Rashwan's avatar
Abdullah Rashwan committed
317

Yeqing Li's avatar
Yeqing Li committed
318
319
  def __call__(self, features: Dict[str, tf.Tensor],
               label: tf.Tensor) -> Tuple[Dict[str, tf.Tensor], tf.Tensor]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
320
    """Parses a single tf.Example into image and label tensors."""
Yeqing Li's avatar
Yeqing Li committed
321
322
323
324
325
326
    for key in ['image', 'audio']:
      if key in features:
        features[key] = _postprocess_image(
            image=features[key],
            is_training=self._is_training,
            num_frames=self._num_frames,
Yin Cui's avatar
Yin Cui committed
327
328
            num_test_clips=self._num_test_clips,
            num_test_crops=self._num_test_crops)
Yeqing Li's avatar
Yeqing Li committed
329
330

    return features, label