mask_ops_test.py 3.38 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for mask_ops.py."""

# Import libraries
import numpy as np
import tensorflow as tf
from official.vision.ops import mask_ops


class MaskUtilsTest(tf.test.TestCase):

  def testPasteInstanceMasks(self):
    image_height = 10
    image_width = 10
    mask_height = 6
    mask_width = 6
    masks = np.random.randint(0, 255, (1, mask_height, mask_width))
    detected_boxes = np.array([[0.0, 2.0, mask_width, mask_height]])

    _ = mask_ops.paste_instance_masks(
        masks, detected_boxes, image_height, image_width)

  def testPasteInstanceMasksV2(self):
    image_height = 10
    image_width = 10
    mask_height = 6
    mask_width = 6
    masks = np.random.randint(0, 255, (1, mask_height, mask_width))
    detected_boxes = np.array([[0.0, 2.0, mask_width, mask_height]])

    image_masks = mask_ops.paste_instance_masks_v2(
        masks, detected_boxes, image_height, image_width)

    self.assertNDArrayNear(
        image_masks[:, 2:8, 0:6],
        np.array(masks > 0.5, dtype=np.uint8),
        1e-5)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
  def testBbox2mask(self):
    bboxes = tf.constant([[1, 2, 4, 4], [-1, -1, 3, 3], [2, 3, 6, 8],
                          [1, 1, 2, 2], [1, 1, 1, 4]])
    masks = mask_ops.bbox2mask(
        bboxes, image_height=5, image_width=6, dtype=tf.int32)
    expected_masks = tf.constant(
        [
            [  # bbox = [1, 2, 4, 4]
                [0, 0, 0, 0, 0, 0],
                [0, 0, 1, 1, 0, 0],
                [0, 0, 1, 1, 0, 0],
                [0, 0, 1, 1, 0, 0],
                [0, 0, 0, 0, 0, 0],
            ],
            [  # bbox = [-1, -1, 3, 3]
                [1, 1, 1, 0, 0, 0],
                [1, 1, 1, 0, 0, 0],
                [1, 1, 1, 0, 0, 0],
                [0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0],
            ],
            [  # bbox = [2, 3, 6, 8]
                [0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0],
                [0, 0, 0, 1, 1, 1],
                [0, 0, 0, 1, 1, 1],
                [0, 0, 0, 1, 1, 1],
            ],
            [  # bbox =  [1, 1, 2, 2]
                [0, 0, 0, 0, 0, 0],
                [0, 1, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0],
            ],
            [  # bbox = [1, 1, 1, 4]
                [0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0],
            ]
        ],
        dtype=tf.int32)
    self.assertAllEqual(expected_masks, masks)

  def testBbox2maskInvalidInput(self):
    bboxes = tf.constant([[1, 2, 4, 4, 4], [-1, -1, 3, 3, 3]])
    with self.assertRaisesRegex(ValueError, 'bbox.*size == 4'):
      mask_ops.bbox2mask(bboxes, image_height=5, image_width=6, dtype=tf.int32)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
103
104
105

if __name__ == '__main__':
  tf.test.main()