teams_pretrainer.py 18 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Trainer network for ELECTRA models."""
# pylint: disable=g-classes-have-attributes

import tensorflow as tf

from official.modeling import tf_utils
from official.nlp.modeling import layers
from official.nlp.modeling import models


class ReplacedTokenDetectionHead(tf.keras.layers.Layer):
  """Replaced token detection discriminator head.

  Arguments:
    encoder_cfg: Encoder config, used to create hidden layers and head.
    num_task_agnostic_layers: Number of task agnostic layers in the
      discriminator.
    output: The output style for this network. Can be either 'logits' or
      'predictions'.
  """

  def __init__(self,
               encoder_cfg,
               num_task_agnostic_layers,
               output='logits',
               name='rtd',
               **kwargs):
    super(ReplacedTokenDetectionHead, self).__init__(name=name, **kwargs)
    self.num_task_agnostic_layers = num_task_agnostic_layers
    self.hidden_size = encoder_cfg['embedding_cfg']['hidden_size']
    self.num_hidden_instances = encoder_cfg['num_hidden_instances']
    self.hidden_cfg = encoder_cfg['hidden_cfg']
    self.activation = self.hidden_cfg['intermediate_activation']
    self.initializer = self.hidden_cfg['kernel_initializer']

    if output not in ('predictions', 'logits'):
      raise ValueError(
          ('Unknown `output` value "%s". `output` can be either "logits" or '
           '"predictions"') % output)
    self._output_type = output

  def build(self, input_shape):
    self.hidden_layers = []
    for i in range(self.num_task_agnostic_layers, self.num_hidden_instances):
      self.hidden_layers.append(
          layers.Transformer(
              num_attention_heads=self.hidden_cfg['num_attention_heads'],
              intermediate_size=self.hidden_cfg['intermediate_size'],
              intermediate_activation=self.activation,
              dropout_rate=self.hidden_cfg['dropout_rate'],
              attention_dropout_rate=self.hidden_cfg['attention_dropout_rate'],
              kernel_initializer=self.initializer,
              name='transformer/layer_%d_rtd' % i))
    self.dense = tf.keras.layers.Dense(
        self.hidden_size,
        activation=self.activation,
        kernel_initializer=self.initializer,
        name='transform/rtd_dense')
    self.rtd_head = tf.keras.layers.Dense(
        units=1, kernel_initializer=self.initializer,
        name='transform/rtd_head')

  def call(self, sequence_data, input_mask):
    """Compute inner-products of hidden vectors with sampled element embeddings.

    Args:
      sequence_data: A [batch_size, seq_length, num_hidden] tensor.
      input_mask: A [batch_size, seq_length] binary mask to separate the input
        from the padding.

    Returns:
      A [batch_size, seq_length] tensor.
    """
    attention_mask = layers.SelfAttentionMask()([sequence_data, input_mask])
    data = sequence_data
    for hidden_layer in self.hidden_layers:
      data = hidden_layer([sequence_data, attention_mask])
    rtd_logits = self.rtd_head(self.dense(data))
    return tf.squeeze(rtd_logits, axis=-1)


class MultiWordSelectionHead(tf.keras.layers.Layer):
  """Multi-word selection discriminator head.

  Arguments:
    embedding_table: The embedding table.
    activation: The activation, if any, for the dense layer.
    initializer: The intializer for the dense layer. Defaults to a Glorot
      uniform initializer.
    output: The output style for this network. Can be either 'logits' or
      'predictions'.
  """

  def __init__(self,
               embedding_table,
               activation=None,
               initializer='glorot_uniform',
               output='logits',
               name='mws',
               **kwargs):
    super(MultiWordSelectionHead, self).__init__(name=name, **kwargs)
    self.embedding_table = embedding_table
    self.activation = activation
    self.initializer = tf.keras.initializers.get(initializer)

    if output not in ('predictions', 'logits'):
      raise ValueError(
          ('Unknown `output` value "%s". `output` can be either "logits" or '
           '"predictions"') % output)
    self._output_type = output

  def build(self, input_shape):
    self._vocab_size, self.embed_size = self.embedding_table.shape
    self.dense = tf.keras.layers.Dense(
        self.embed_size,
        activation=self.activation,
        kernel_initializer=self.initializer,
        name='transform/mws_dense')
    self.layer_norm = tf.keras.layers.LayerNormalization(
        axis=-1, epsilon=1e-12, name='transform/mws_layernorm')

    super(MultiWordSelectionHead, self).build(input_shape)

  def call(self, sequence_data, masked_positions, candidate_sets):
    """Compute inner-products of hidden vectors with sampled element embeddings.

    Args:
      sequence_data: A [batch_size, seq_length, num_hidden] tensor.
      masked_positions: A [batch_size, num_prediction] tensor.
      candidate_sets: A [batch_size, num_prediction, k] tensor.

    Returns:
      A [batch_size, num_prediction, k] tensor.
    """
    # Gets shapes for later usage
    candidate_set_shape = tf_utils.get_shape_list(candidate_sets)
    num_prediction = candidate_set_shape[1]

    # Gathers hidden vectors -> (batch_size, num_prediction, 1, embed_size)
    masked_lm_input = self._gather_indexes(sequence_data, masked_positions)
    lm_data = self.dense(masked_lm_input)
    lm_data = self.layer_norm(lm_data)
    lm_data = tf.expand_dims(
        tf.reshape(lm_data, [-1, num_prediction, self.embed_size]), 2)

    # Gathers embeddings -> (batch_size, num_prediction, embed_size, k)
    flat_candidate_sets = tf.reshape(candidate_sets, [-1])
    candidate_embeddings = tf.gather(self.embedding_table, flat_candidate_sets)
    candidate_embeddings = tf.reshape(
        candidate_embeddings,
        tf.concat([tf.shape(candidate_sets), [self.embed_size]], axis=0)
    )
    candidate_embeddings.set_shape(
        candidate_sets.shape.as_list() + [self.embed_size])
    candidate_embeddings = tf.transpose(candidate_embeddings, [0, 1, 3, 2])

    # matrix multiplication + squeeze -> (batch_size, num_prediction, k)
    logits = tf.matmul(lm_data, candidate_embeddings)
    logits = tf.squeeze(logits, 2)

    if self._output_type == 'logits':
      return logits
    return tf.nn.log_softmax(logits)

  def _gather_indexes(self, sequence_tensor, positions):
    """Gathers the vectors at the specific positions.

    Args:
        sequence_tensor: Sequence output of shape
          (`batch_size`, `seq_length`, `num_hidden`) where `num_hidden` is
          number of hidden units.
        positions: Positions ids of tokens in batched sequences.

    Returns:
        Sequence tensor of shape (batch_size * num_predictions,
        num_hidden).
    """
    sequence_shape = tf_utils.get_shape_list(
        sequence_tensor, name='sequence_output_tensor')
    batch_size, seq_length, width = sequence_shape

    flat_offsets = tf.reshape(
        tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
    flat_positions = tf.reshape(positions + flat_offsets, [-1])
    flat_sequence_tensor = tf.reshape(sequence_tensor,
                                      [batch_size * seq_length, width])
    output_tensor = tf.gather(flat_sequence_tensor, flat_positions)

    return output_tensor


@tf.keras.utils.register_keras_serializable(package='Text')
class TeamsPretrainer(tf.keras.Model):
  """TEAMS network training model.

  This is an implementation of the network structure described in "Training
  ELECTRA Augmented with Multi-word Selection"
  (https://arxiv.org/abs/2106.00139).

  The TeamsPretrainer allows a user to pass in two transformer encoders, one
  for generator, the other for discriminator (multi-word selection). The
  pretrainer then instantiates the masked language model (at generator side) and
  classification networks (including both multi-word selection head and replaced
  token detection head) that are used to create the training objectives.

  *Note* that the model is constructed by Keras Subclass API, where layers are
  defined inside `__init__` and `call()` implements the computation.

  Args:
    generator_network: A transformer encoder for generator, this network should
      output a sequence output.
    discriminator_mws_network: A transformer encoder for multi-word selection
      discriminator, this network should output a sequence output.
    num_discriminator_task_agnostic_layers: Number of layers shared between
      multi-word selection and random token detection discriminators.
    vocab_size: Size of generator output vocabulary
    num_classes: Number of classes to predict from the classification network
      for the generator network (not used now)
    mlm_activation: The activation (if any) to use in the masked LM and
      classification networks. If None, no activation will be used.
    mlm_initializer: The initializer (if any) to use in the masked LM and
      classification networks. Defaults to a Glorot uniform initializer.
    output_type: The output style for this network. Can be either `logits` or
      `predictions`.
    disallow_correct: Whether to disallow the generator to generate the exact
      same token in the original sentence
  """

  def __init__(self,
               generator_network,
               discriminator_mws_network,
               num_discriminator_task_agnostic_layers,
               vocab_size,
               candidate_size=5,
               mlm_activation=None,
               mlm_initializer='glorot_uniform',
               output_type='logits',
               **kwargs):
    super().__init__()
    self._config = {
        'generator_network':
            generator_network,
        'discriminator_mws_network':
            discriminator_mws_network,
        'num_discriminator_task_agnostic_layers':
            num_discriminator_task_agnostic_layers,
        'vocab_size':
            vocab_size,
        'candidate_size':
            candidate_size,
        'mlm_activation':
            mlm_activation,
        'mlm_initializer':
            mlm_initializer,
        'output_type':
            output_type,
    }
    for k, v in kwargs.items():
      self._config[k] = v

    self.generator_network = generator_network
    self.discriminator_mws_network = discriminator_mws_network
    self.vocab_size = vocab_size
    self.candidate_size = candidate_size
    self.mlm_activation = mlm_activation
    self.mlm_initializer = mlm_initializer
    self.output_type = output_type
    embedding_table = generator_network.embedding_network.get_embedding_table()
    self.masked_lm = layers.MaskedLM(
        embedding_table=embedding_table,
        activation=mlm_activation,
        initializer=mlm_initializer,
        output=output_type,
        name='generator_masked_lm')
    discriminator_cfg = self.discriminator_mws_network.get_config()
    self.discriminator_rtd_head = ReplacedTokenDetectionHead(
        encoder_cfg=discriminator_cfg,
        num_task_agnostic_layers=num_discriminator_task_agnostic_layers,
        output=output_type,
        name='discriminator_rtd')
    hidden_cfg = discriminator_cfg['hidden_cfg']
    self.discriminator_mws_head = MultiWordSelectionHead(
        embedding_table=embedding_table,
        activation=hidden_cfg['intermediate_activation'],
        initializer=hidden_cfg['kernel_initializer'],
        output=output_type,
        name='discriminator_mws')
    self.num_task_agnostic_layers = num_discriminator_task_agnostic_layers

  def call(self, inputs):
    """TEAMS forward pass.

    Args:
      inputs: A dict of all inputs, same as the standard BERT model.

    Returns:
      outputs: A dict of pretrainer model outputs, including
        (1) lm_outputs: A `[batch_size, num_token_predictions, vocab_size]`
        tensor indicating logits on masked positions.
        (2) sentence_outputs: A `[batch_size, num_classes]` tensor indicating
        logits for nsp task.
        (3) disc_logits: A `[batch_size, sequence_length]` tensor indicating
        logits for discriminator replaced token detection task.
        (4) disc_label: A `[batch_size, sequence_length]` tensor indicating
        target labels for discriminator replaced token detection task.
    """
    input_word_ids = inputs['input_word_ids']
    input_mask = inputs['input_mask']
    input_type_ids = inputs['input_type_ids']
    masked_lm_positions = inputs['masked_lm_positions']

    # Runs generator.
    sequence_output = self.generator_network(
        [input_word_ids, input_mask, input_type_ids])['sequence_output']
    # The generator encoder network may get outputs from all layers.
    if isinstance(sequence_output, list):
      sequence_output = sequence_output[-1]

    lm_outputs = self.masked_lm(sequence_output, masked_lm_positions)

    # Samples tokens from generator.
    fake_data = self._get_fake_data(inputs, lm_outputs)

    # Runs discriminator.
    disc_input = fake_data['inputs']
    disc_rtd_label = fake_data['is_fake_tokens']
    disc_mws_candidates = fake_data['candidate_set']
    mws_sequence_outputs = self.discriminator_mws_network([
        disc_input['input_word_ids'], disc_input['input_mask'],
        disc_input['input_type_ids']
    ])['encoder_outputs']

    # Applies replaced token detection with input selected based on
    # self.num_discriminator_task_agnostic_layers
    disc_rtd_logits = self.discriminator_rtd_head(
        mws_sequence_outputs[self.num_task_agnostic_layers - 1], input_mask)

    # Applies multi-word selection.
    disc_mws_logits = self.discriminator_mws_head(mws_sequence_outputs[-1],
                                                  masked_lm_positions,
                                                  disc_mws_candidates)
    outputs = {
        'lm_outputs': lm_outputs,
        'disc_rtd_logits': disc_rtd_logits,
        'disc_rtd_label': disc_rtd_label,
        'disc_mws_logits': disc_mws_logits,
    }

    return outputs

  def _get_fake_data(self, inputs, mlm_logits):
    """Generate corrupted data for discriminator.

    Note it is poosible for sampled token to be the same as the correct one.
    Args:
      inputs: A dict of all inputs, same as the input of `call()` function
      mlm_logits: The generator's output logits

    Returns:
      A dict of generated fake data
    """
    inputs = models.electra_pretrainer.unmask(inputs, duplicate=True)

    # Samples replaced token.
    sampled_tokens = tf.stop_gradient(
        models.electra_pretrainer.sample_from_softmax(
            mlm_logits, disallow=None))
    sampled_tokids = tf.argmax(sampled_tokens, -1, output_type=tf.int32)

    # Prepares input and label for replaced token detection task.
    updated_input_ids, masked = models.electra_pretrainer.scatter_update(
        inputs['input_word_ids'], sampled_tokids, inputs['masked_lm_positions'])
    rtd_labels = masked * (1 - tf.cast(
        tf.equal(updated_input_ids, inputs['input_word_ids']), tf.int32))
    updated_inputs = models.electra_pretrainer.get_updated_inputs(
        inputs, duplicate=True, input_word_ids=updated_input_ids)

    # Samples (candidate_size-1) negatives and concat with true tokens
    disallow = tf.one_hot(
        inputs['masked_lm_ids'], depth=self.vocab_size, dtype=tf.float32)
    sampled_candidates = tf.stop_gradient(
        sample_k_from_softmax(mlm_logits, k=self.candidate_size-1,
                              disallow=disallow))
    true_token_id = tf.expand_dims(inputs['masked_lm_ids'], -1)
    candidate_set = tf.concat([true_token_id, sampled_candidates], -1)

    return {
        'inputs': updated_inputs,
        'is_fake_tokens': rtd_labels,
        'sampled_tokens': sampled_tokens,
        'candidate_set': candidate_set
    }

  @property
  def checkpoint_items(self):
    """Returns a dictionary of items to be additionally checkpointed."""
    items = dict(encoder=self.discriminator_network)
    return items

  def get_config(self):
    return self._config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)


def sample_k_from_softmax(logits, k=5, disallow=None, use_topk=False):
  """Implement softmax sampling using gumbel softmax trick to select k items.

  Args:
    logits: A [batch_size, num_token_predictions, vocab_size] tensor indicating
      the generator output logits for each masked position.
    k: Number of samples
    disallow: If `None`, we directly sample tokens from the logits. Otherwise,
      this is a tensor of size [batch_size, num_token_predictions, vocab_size]
      indicating the true word id in each masked position.
    use_topk: Whether to use tf.nn.top_k or using approximate iterative approach
      which is faster.

  Returns:
    sampled_tokens: A [batch_size, num_token_predictions, k] tensor indicating
    the sampled word id in each masked position.
  """
  if use_topk:
    if disallow is not None:
      logits -= 10000.0 * disallow
    uniform_noise = tf.random.uniform(
        tf_utils.get_shape_list(logits), minval=0, maxval=1)
    gumbel_noise = -tf.math.log(-tf.math.log(uniform_noise + 1e-9) + 1e-9)
    _, sampled_tokens = tf.nn.top_k(logits + gumbel_noise, k=k, sorted=False)
  else:
    sampled_tokens_list = []
    vocab_size = tf_utils.get_shape_list(logits)[-1]
    if disallow is not None:
      logits -= 10000.0 * disallow

    uniform_noise = tf.random.uniform(
        tf_utils.get_shape_list(logits), minval=0, maxval=1)
    gumbel_noise = -tf.math.log(-tf.math.log(uniform_noise + 1e-9) + 1e-9)
    logits += gumbel_noise
    for _ in range(k):
      token_ids = tf.argmax(logits, -1, output_type=tf.int32)
      sampled_tokens_list.append(token_ids)
      logits -= 10000.0 *  tf.one_hot(
          token_ids, depth=vocab_size, dtype=tf.float32)
    sampled_tokens = tf.stack(sampled_tokens_list, -1)
  return sampled_tokens