"sgl-kernel/vscode:/vscode.git/clone" did not exist on "9a512cf95b70f3922ec60493d7df2521473327d4"
inception_v2.py 26.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the definition for inception v2 classification network."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
22
from tensorflow.contrib import slim as contrib_slim
23

Alex Kurakin's avatar
Alex Kurakin committed
24
25
from nets import inception_utils

26
slim = contrib_slim
27
28
29
30

# pylint: disable=g-long-lambda
trunc_normal = lambda stddev: tf.compat.v1.truncated_normal_initializer(
    0.0, stddev)
31
32
33
34
35
36


def inception_v2_base(inputs,
                      final_endpoint='Mixed_5c',
                      min_depth=16,
                      depth_multiplier=1.0,
Derek Chow's avatar
Derek Chow committed
37
38
                      use_separable_conv=True,
                      data_format='NHWC',
39
                      include_root_block=True,
40
41
42
43
44
45
46
47
48
49
50
51
52
                      scope=None):
  """Inception v2 (6a2).

  Constructs an Inception v2 network from inputs to the given final endpoint.
  This method can construct the network up to the layer inception(5b) as
  described in http://arxiv.org/abs/1502.03167.

  Args:
    inputs: a tensor of shape [batch_size, height, width, channels].
    final_endpoint: specifies the endpoint to construct the network up to. It
      can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
      'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'Mixed_4a',
      'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_5a', 'Mixed_5b',
53
54
55
      'Mixed_5c']. If include_root_block is False, ['Conv2d_1a_7x7',
      'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3'] will
      not be available.
56
57
58
59
60
61
62
    min_depth: Minimum depth value (number of channels) for all convolution ops.
      Enforced when depth_multiplier < 1, and not an active constraint when
      depth_multiplier >= 1.
    depth_multiplier: Float multiplier for the depth (number of channels)
      for all convolution ops. The value must be greater than zero. Typical
      usage will be to set this value in (0, 1) to reduce the number of
      parameters or computation cost of the model.
Derek Chow's avatar
Derek Chow committed
63
64
65
    use_separable_conv: Use a separable convolution for the first layer
      Conv2d_1a_7x7. If this is False, use a normal convolution instead.
    data_format: Data format of the activations ('NHWC' or 'NCHW').
66
67
    include_root_block: If True, include the convolution and max-pooling layers
      before the inception modules. If False, excludes those layers.
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    scope: Optional variable_scope.

  Returns:
    tensor_out: output tensor corresponding to the final_endpoint.
    end_points: a set of activations for external use, for example summaries or
                losses.

  Raises:
    ValueError: if final_endpoint is not set to one of the predefined values,
                or depth_multiplier <= 0
  """

  # end_points will collect relevant activations for external use, for example
  # summaries or losses.
  end_points = {}

  # Used to find thinned depths for each layer.
  if depth_multiplier <= 0:
    raise ValueError('depth_multiplier is not greater than zero.')
  depth = lambda d: max(int(d * depth_multiplier), min_depth)

Derek Chow's avatar
Derek Chow committed
89
90
91
92
93
94
95
96
97
  if data_format != 'NHWC' and data_format != 'NCHW':
    raise ValueError('data_format must be either NHWC or NCHW.')
  if data_format == 'NCHW' and use_separable_conv:
    raise ValueError(
        'separable convolution only supports NHWC layout. NCHW data format can'
        ' only be used when use_separable_conv is False.'
    )

  concat_dim = 3 if data_format == 'NHWC' else 1
98
  with tf.compat.v1.variable_scope(scope, 'InceptionV2', [inputs]):
99
    with slim.arg_scope(
Derek Chow's avatar
Derek Chow committed
100
101
102
103
        [slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
        stride=1,
        padding='SAME',
        data_format=data_format):
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
      net = inputs
      if include_root_block:
        # Note that sizes in the comments below assume an input spatial size of
        # 224x224, however, the inputs can be of any size greater 32x32.

        # 224 x 224 x 3
        end_point = 'Conv2d_1a_7x7'

        if use_separable_conv:
          # depthwise_multiplier here is different from depth_multiplier.
          # depthwise_multiplier determines the output channels of the initial
          # depthwise conv (see docs for tf.nn.separable_conv2d), while
          # depth_multiplier controls the # channels of the subsequent 1x1
          # convolution. Must have
          #   in_channels * depthwise_multipler <= out_channels
          # so that the separable convolution is not overparameterized.
          depthwise_multiplier = min(int(depth(64) / 3), 8)
          net = slim.separable_conv2d(
              inputs,
              depth(64), [7, 7],
              depth_multiplier=depthwise_multiplier,
              stride=2,
              padding='SAME',
              weights_initializer=trunc_normal(1.0),
              scope=end_point)
        else:
          # Use a normal convolution instead of a separable convolution.
          net = slim.conv2d(
              inputs,
              depth(64), [7, 7],
              stride=2,
              weights_initializer=trunc_normal(1.0),
              scope=end_point)
        end_points[end_point] = net
        if end_point == final_endpoint:
          return net, end_points
        # 112 x 112 x 64
        end_point = 'MaxPool_2a_3x3'
        net = slim.max_pool2d(net, [3, 3], scope=end_point, stride=2)
        end_points[end_point] = net
        if end_point == final_endpoint:
          return net, end_points
        # 56 x 56 x 64
        end_point = 'Conv2d_2b_1x1'
Derek Chow's avatar
Derek Chow committed
149
        net = slim.conv2d(
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
            net,
            depth(64), [1, 1],
            scope=end_point,
            weights_initializer=trunc_normal(0.1))
        end_points[end_point] = net
        if end_point == final_endpoint:
          return net, end_points
        # 56 x 56 x 64
        end_point = 'Conv2d_2c_3x3'
        net = slim.conv2d(net, depth(192), [3, 3], scope=end_point)
        end_points[end_point] = net
        if end_point == final_endpoint:
          return net, end_points
        # 56 x 56 x 192
        end_point = 'MaxPool_3a_3x3'
        net = slim.max_pool2d(net, [3, 3], scope=end_point, stride=2)
        end_points[end_point] = net
        if end_point == final_endpoint:
          return net, end_points

170
171
172
      # 28 x 28 x 192
      # Inception module.
      end_point = 'Mixed_3b'
173
174
      with tf.compat.v1.variable_scope(end_point):
        with tf.compat.v1.variable_scope('Branch_0'):
175
          branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
176
        with tf.compat.v1.variable_scope('Branch_1'):
177
178
179
180
181
182
          branch_1 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(64), [3, 3],
                                 scope='Conv2d_0b_3x3')
183
        with tf.compat.v1.variable_scope('Branch_2'):
184
185
186
187
188
189
190
191
          branch_2 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0c_3x3')
192
        with tf.compat.v1.variable_scope('Branch_3'):
193
194
195
196
197
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(32), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
Derek Chow's avatar
Derek Chow committed
198
199
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
200
201
202
203
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 28 x 28 x 256
      end_point = 'Mixed_3c'
204
205
      with tf.compat.v1.variable_scope(end_point):
        with tf.compat.v1.variable_scope('Branch_0'):
206
          branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
207
        with tf.compat.v1.variable_scope('Branch_1'):
208
209
210
211
212
213
          branch_1 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(96), [3, 3],
                                 scope='Conv2d_0b_3x3')
214
        with tf.compat.v1.variable_scope('Branch_2'):
215
216
217
218
219
220
221
222
          branch_2 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0c_3x3')
223
        with tf.compat.v1.variable_scope('Branch_3'):
224
225
226
227
228
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
Derek Chow's avatar
Derek Chow committed
229
230
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
231
232
233
234
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 28 x 28 x 320
      end_point = 'Mixed_4a'
235
236
      with tf.compat.v1.variable_scope(end_point):
        with tf.compat.v1.variable_scope('Branch_0'):
237
238
239
240
241
242
          branch_0 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_0 = slim.conv2d(branch_0, depth(160), [3, 3], stride=2,
                                 scope='Conv2d_1a_3x3')
243
        with tf.compat.v1.variable_scope('Branch_1'):
244
245
246
247
248
249
250
251
          branch_1 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(
              branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3')
          branch_1 = slim.conv2d(
              branch_1, depth(96), [3, 3], stride=2, scope='Conv2d_1a_3x3')
252
        with tf.compat.v1.variable_scope('Branch_2'):
253
254
          branch_2 = slim.max_pool2d(
              net, [3, 3], stride=2, scope='MaxPool_1a_3x3')
Derek Chow's avatar
Derek Chow committed
255
        net = tf.concat(axis=concat_dim, values=[branch_0, branch_1, branch_2])
256
257
258
259
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_4b'
260
261
      with tf.compat.v1.variable_scope(end_point):
        with tf.compat.v1.variable_scope('Branch_0'):
262
          branch_0 = slim.conv2d(net, depth(224), [1, 1], scope='Conv2d_0a_1x1')
263
        with tf.compat.v1.variable_scope('Branch_1'):
264
265
266
267
268
269
          branch_1 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(
              branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3')
270
        with tf.compat.v1.variable_scope('Branch_2'):
271
272
273
274
275
276
277
278
          branch_2 = slim.conv2d(
              net, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(128), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(128), [3, 3],
                                 scope='Conv2d_0c_3x3')
279
        with tf.compat.v1.variable_scope('Branch_3'):
280
281
282
283
284
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
Derek Chow's avatar
Derek Chow committed
285
286
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
287
288
289
290
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_4c'
291
292
      with tf.compat.v1.variable_scope(end_point):
        with tf.compat.v1.variable_scope('Branch_0'):
293
          branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
294
        with tf.compat.v1.variable_scope('Branch_1'):
295
296
297
298
299
300
          branch_1 = slim.conv2d(
              net, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(128), [3, 3],
                                 scope='Conv2d_0b_3x3')
301
        with tf.compat.v1.variable_scope('Branch_2'):
302
303
304
305
306
307
308
309
          branch_2 = slim.conv2d(
              net, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(128), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(128), [3, 3],
                                 scope='Conv2d_0c_3x3')
310
        with tf.compat.v1.variable_scope('Branch_3'):
311
312
313
314
315
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
Derek Chow's avatar
Derek Chow committed
316
317
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
318
319
320
321
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_4d'
322
323
      with tf.compat.v1.variable_scope(end_point):
        with tf.compat.v1.variable_scope('Branch_0'):
324
          branch_0 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1')
325
        with tf.compat.v1.variable_scope('Branch_1'):
326
327
328
329
330
331
          branch_1 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(160), [3, 3],
                                 scope='Conv2d_0b_3x3')
332
        with tf.compat.v1.variable_scope('Branch_2'):
333
334
335
336
337
338
339
340
          branch_2 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(160), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(160), [3, 3],
                                 scope='Conv2d_0c_3x3')
341
        with tf.compat.v1.variable_scope('Branch_3'):
342
343
344
345
346
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
Derek Chow's avatar
Derek Chow committed
347
348
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
349
350
351
352
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_4e'
353
354
      with tf.compat.v1.variable_scope(end_point):
        with tf.compat.v1.variable_scope('Branch_0'):
355
          branch_0 = slim.conv2d(net, depth(96), [1, 1], scope='Conv2d_0a_1x1')
356
        with tf.compat.v1.variable_scope('Branch_1'):
357
358
359
360
361
362
          branch_1 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(192), [3, 3],
                                 scope='Conv2d_0b_3x3')
363
        with tf.compat.v1.variable_scope('Branch_2'):
364
365
366
367
368
369
370
371
          branch_2 = slim.conv2d(
              net, depth(160), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(192), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(192), [3, 3],
                                 scope='Conv2d_0c_3x3')
372
        with tf.compat.v1.variable_scope('Branch_3'):
373
374
375
376
377
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
Derek Chow's avatar
Derek Chow committed
378
379
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
380
381
382
383
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_5a'
384
385
      with tf.compat.v1.variable_scope(end_point):
        with tf.compat.v1.variable_scope('Branch_0'):
386
387
388
389
390
391
          branch_0 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_0 = slim.conv2d(branch_0, depth(192), [3, 3], stride=2,
                                 scope='Conv2d_1a_3x3')
392
        with tf.compat.v1.variable_scope('Branch_1'):
393
394
395
396
397
398
399
400
          branch_1 = slim.conv2d(
              net, depth(192), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(256), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_1 = slim.conv2d(branch_1, depth(256), [3, 3], stride=2,
                                 scope='Conv2d_1a_3x3')
401
        with tf.compat.v1.variable_scope('Branch_2'):
402
403
          branch_2 = slim.max_pool2d(net, [3, 3], stride=2,
                                     scope='MaxPool_1a_3x3')
Derek Chow's avatar
Derek Chow committed
404
405
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2])
406
407
408
409
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 7 x 7 x 1024
      end_point = 'Mixed_5b'
410
411
      with tf.compat.v1.variable_scope(end_point):
        with tf.compat.v1.variable_scope('Branch_0'):
412
          branch_0 = slim.conv2d(net, depth(352), [1, 1], scope='Conv2d_0a_1x1')
413
        with tf.compat.v1.variable_scope('Branch_1'):
414
415
416
417
418
419
          branch_1 = slim.conv2d(
              net, depth(192), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(320), [3, 3],
                                 scope='Conv2d_0b_3x3')
420
        with tf.compat.v1.variable_scope('Branch_2'):
421
422
423
424
425
426
427
428
          branch_2 = slim.conv2d(
              net, depth(160), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
                                 scope='Conv2d_0c_3x3')
429
        with tf.compat.v1.variable_scope('Branch_3'):
430
431
432
433
434
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
Derek Chow's avatar
Derek Chow committed
435
436
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
437
438
439
440
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 7 x 7 x 1024
      end_point = 'Mixed_5c'
441
442
      with tf.compat.v1.variable_scope(end_point):
        with tf.compat.v1.variable_scope('Branch_0'):
443
          branch_0 = slim.conv2d(net, depth(352), [1, 1], scope='Conv2d_0a_1x1')
444
        with tf.compat.v1.variable_scope('Branch_1'):
445
446
447
448
449
450
          branch_1 = slim.conv2d(
              net, depth(192), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(320), [3, 3],
                                 scope='Conv2d_0b_3x3')
451
        with tf.compat.v1.variable_scope('Branch_2'):
452
453
454
455
456
457
458
459
          branch_2 = slim.conv2d(
              net, depth(192), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
                                 scope='Conv2d_0c_3x3')
460
        with tf.compat.v1.variable_scope('Branch_3'):
461
462
463
464
465
          branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
Derek Chow's avatar
Derek Chow committed
466
467
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
468
469
470
471
472
473
474
475
476
477
478
479
480
481
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
    raise ValueError('Unknown final endpoint %s' % final_endpoint)


def inception_v2(inputs,
                 num_classes=1000,
                 is_training=True,
                 dropout_keep_prob=0.8,
                 min_depth=16,
                 depth_multiplier=1.0,
                 prediction_fn=slim.softmax,
                 spatial_squeeze=True,
                 reuse=None,
482
483
                 scope='InceptionV2',
                 global_pool=False):
484
485
486
487
488
489
490
491
492
  """Inception v2 model for classification.

  Constructs an Inception v2 network for classification as described in
  http://arxiv.org/abs/1502.03167.

  The default image size used to train this network is 224x224.

  Args:
    inputs: a tensor of shape [batch_size, height, width, channels].
493
494
495
    num_classes: number of predicted classes. If 0 or None, the logits layer
      is omitted and the input features to the logits layer (before dropout)
      are returned instead.
496
497
498
499
500
501
502
503
504
505
    is_training: whether is training or not.
    dropout_keep_prob: the percentage of activation values that are retained.
    min_depth: Minimum depth value (number of channels) for all convolution ops.
      Enforced when depth_multiplier < 1, and not an active constraint when
      depth_multiplier >= 1.
    depth_multiplier: Float multiplier for the depth (number of channels)
      for all convolution ops. The value must be greater than zero. Typical
      usage will be to set this value in (0, 1) to reduce the number of
      parameters or computation cost of the model.
    prediction_fn: a function to get predictions out of logits.
Derek Chow's avatar
Derek Chow committed
506
507
    spatial_squeeze: if True, logits is of shape [B, C], if false logits is of
        shape [B, 1, 1, C], where B is batch_size and C is number of classes.
508
509
510
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.
511
512
513
514
    global_pool: Optional boolean flag to control the avgpooling before the
      logits layer. If false or unset, pooling is done with a fixed window
      that reduces default-sized inputs to 1x1, while larger inputs lead to
      larger outputs. If true, any input size is pooled down to 1x1.
515
516

  Returns:
517
518
519
    net: a Tensor with the logits (pre-softmax activations) if num_classes
      is a non-zero integer, or the non-dropped-out input to the logits layer
      if num_classes is 0 or None.
520
521
522
523
524
525
526
527
528
529
530
    end_points: a dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: if final_endpoint is not set to one of the predefined values,
                or depth_multiplier <= 0
  """
  if depth_multiplier <= 0:
    raise ValueError('depth_multiplier is not greater than zero.')

  # Final pooling and prediction
531
532
  with tf.compat.v1.variable_scope(
      scope, 'InceptionV2', [inputs], reuse=reuse) as scope:
533
534
535
536
537
    with slim.arg_scope([slim.batch_norm, slim.dropout],
                        is_training=is_training):
      net, end_points = inception_v2_base(
          inputs, scope=scope, min_depth=min_depth,
          depth_multiplier=depth_multiplier)
538
      with tf.compat.v1.variable_scope('Logits'):
539
540
        if global_pool:
          # Global average pooling.
541
542
          net = tf.reduce_mean(
              input_tensor=net, axis=[1, 2], keepdims=True, name='global_pool')
543
544
545
546
547
548
549
550
551
          end_points['global_pool'] = net
        else:
          # Pooling with a fixed kernel size.
          kernel_size = _reduced_kernel_size_for_small_input(net, [7, 7])
          net = slim.avg_pool2d(net, kernel_size, padding='VALID',
                                scope='AvgPool_1a_{}x{}'.format(*kernel_size))
          end_points['AvgPool_1a'] = net
        if not num_classes:
          return net, end_points
552
553
        # 1 x 1 x 1024
        net = slim.dropout(net, keep_prob=dropout_keep_prob, scope='Dropout_1b')
554
        end_points['PreLogits'] = net
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
        logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                             normalizer_fn=None, scope='Conv2d_1c_1x1')
        if spatial_squeeze:
          logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze')
      end_points['Logits'] = logits
      end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
  return logits, end_points
inception_v2.default_image_size = 224


def _reduced_kernel_size_for_small_input(input_tensor, kernel_size):
  """Define kernel size which is automatically reduced for small input.

  If the shape of the input images is unknown at graph construction time this
  function assumes that the input images are is large enough.

  Args:
    input_tensor: input tensor of size [batch_size, height, width, channels].
    kernel_size: desired kernel size of length 2: [kernel_height, kernel_width]

  Returns:
    a tensor with the kernel size.

  TODO(jrru): Make this function work with unknown shapes. Theoretically, this
  can be done with the code below. Problems are two-fold: (1) If the shape was
  known, it will be lost. (2) inception.slim.ops._two_element_tuple cannot
  handle tensors that define the kernel size.
      shape = tf.shape(input_tensor)
Derek Chow's avatar
Derek Chow committed
583
584
      return = tf.stack([tf.minimum(shape[1], kernel_size[0]),
                         tf.minimum(shape[2], kernel_size[1])])
585
586
587
588
589
590
591
592
593
594
595

  """
  shape = input_tensor.get_shape().as_list()
  if shape[1] is None or shape[2] is None:
    kernel_size_out = kernel_size
  else:
    kernel_size_out = [min(shape[1], kernel_size[0]),
                       min(shape[2], kernel_size[1])]
  return kernel_size_out


Alex Kurakin's avatar
Alex Kurakin committed
596
inception_v2_arg_scope = inception_utils.inception_arg_scope