inception_v1_test.py 11.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for nets.inception_v1."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf
23
from tensorflow.contrib import slim as contrib_slim
24
25
26

from nets import inception

27
slim = contrib_slim
28
29
30
31
32
33
34
35
36


class InceptionV1Test(tf.test.TestCase):

  def testBuildClassificationNetwork(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

37
    inputs = tf.random.uniform((batch_size, height, width, 3))
38
    logits, end_points = inception.inception_v1(inputs, num_classes)
39
40
    self.assertTrue(logits.op.name.startswith(
        'InceptionV1/Logits/SpatialSqueeze'))
41
42
43
44
45
46
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertTrue('Predictions' in end_points)
    self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
                         [batch_size, num_classes])

47
48
49
50
51
  def testBuildPreLogitsNetwork(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = None

52
    inputs = tf.random.uniform((batch_size, height, width, 3))
53
54
55
56
57
58
    net, end_points = inception.inception_v1(inputs, num_classes)
    self.assertTrue(net.op.name.startswith('InceptionV1/Logits/AvgPool'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1024])
    self.assertFalse('Logits' in end_points)
    self.assertFalse('Predictions' in end_points)

59
60
61
62
  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 224, 224

63
    inputs = tf.random.uniform((batch_size, height, width, 3))
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    mixed_6c, end_points = inception.inception_v1_base(inputs)
    self.assertTrue(mixed_6c.op.name.startswith('InceptionV1/Mixed_5c'))
    self.assertListEqual(mixed_6c.get_shape().as_list(),
                         [batch_size, 7, 7, 1024])
    expected_endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                          'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b',
                          'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c',
                          'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2',
                          'Mixed_5b', 'Mixed_5c']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)

  def testBuildOnlyUptoFinalEndpoint(self):
    batch_size = 5
    height, width = 224, 224
    endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
                 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d',
                 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b',
                 'Mixed_5c']
    for index, endpoint in enumerate(endpoints):
      with tf.Graph().as_default():
85
        inputs = tf.random.uniform((batch_size, height, width, 3))
86
87
88
89
        out_tensor, end_points = inception.inception_v1_base(
            inputs, final_endpoint=endpoint)
        self.assertTrue(out_tensor.op.name.startswith(
            'InceptionV1/' + endpoint))
pkulzc's avatar
pkulzc committed
90
        self.assertItemsEqual(endpoints[:index+1], end_points.keys())
91
92
93
94
95

  def testBuildAndCheckAllEndPointsUptoMixed5c(self):
    batch_size = 5
    height, width = 224, 224

96
    inputs = tf.random.uniform((batch_size, height, width, 3))
97
98
    _, end_points = inception.inception_v1_base(inputs,
                                                final_endpoint='Mixed_5c')
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    endpoints_shapes = {
        'Conv2d_1a_7x7': [5, 112, 112, 64],
        'MaxPool_2a_3x3': [5, 56, 56, 64],
        'Conv2d_2b_1x1': [5, 56, 56, 64],
        'Conv2d_2c_3x3': [5, 56, 56, 192],
        'MaxPool_3a_3x3': [5, 28, 28, 192],
        'Mixed_3b': [5, 28, 28, 256],
        'Mixed_3c': [5, 28, 28, 480],
        'MaxPool_4a_3x3': [5, 14, 14, 480],
        'Mixed_4b': [5, 14, 14, 512],
        'Mixed_4c': [5, 14, 14, 512],
        'Mixed_4d': [5, 14, 14, 512],
        'Mixed_4e': [5, 14, 14, 528],
        'Mixed_4f': [5, 14, 14, 832],
        'MaxPool_5a_2x2': [5, 7, 7, 832],
        'Mixed_5b': [5, 7, 7, 832],
        'Mixed_5c': [5, 7, 7, 1024]
    }
117
118
119
120
121
122
123
124
125
126
127

    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

  def testModelHasExpectedNumberOfParameters(self):
    batch_size = 5
    height, width = 224, 224
128
    inputs = tf.random.uniform((batch_size, height, width, 3))
129
130
131
132
133
134
135
136
137
138
    with slim.arg_scope(inception.inception_v1_arg_scope()):
      inception.inception_v1_base(inputs)
    total_params, _ = slim.model_analyzer.analyze_vars(
        slim.get_model_variables())
    self.assertAlmostEqual(5607184, total_params)

  def testHalfSizeImages(self):
    batch_size = 5
    height, width = 112, 112

139
    inputs = tf.random.uniform((batch_size, height, width, 3))
140
141
142
143
144
    mixed_5c, _ = inception.inception_v1_base(inputs)
    self.assertTrue(mixed_5c.op.name.startswith('InceptionV1/Mixed_5c'))
    self.assertListEqual(mixed_5c.get_shape().as_list(),
                         [batch_size, 4, 4, 1024])

145
146
147
148
149
  def testBuildBaseNetworkWithoutRootBlock(self):
    batch_size = 5
    height, width = 28, 28
    channels = 192

150
    inputs = tf.random.uniform((batch_size, height, width, channels))
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    _, end_points = inception.inception_v1_base(
        inputs, include_root_block=False)
    endpoints_shapes = {
        'Mixed_3b': [5, 28, 28, 256],
        'Mixed_3c': [5, 28, 28, 480],
        'MaxPool_4a_3x3': [5, 14, 14, 480],
        'Mixed_4b': [5, 14, 14, 512],
        'Mixed_4c': [5, 14, 14, 512],
        'Mixed_4d': [5, 14, 14, 512],
        'Mixed_4e': [5, 14, 14, 528],
        'Mixed_4f': [5, 14, 14, 832],
        'MaxPool_5a_2x2': [5, 7, 7, 832],
        'Mixed_5b': [5, 7, 7, 832],
        'Mixed_5c': [5, 7, 7, 1024]
    }

    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)

174
  def testUnknownImageShape(self):
175
    tf.compat.v1.reset_default_graph()
176
177
178
179
180
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
181
182
      inputs = tf.compat.v1.placeholder(
          tf.float32, shape=(batch_size, None, None, 3))
183
184
185
186
187
188
      logits, end_points = inception.inception_v1(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
189
      tf.compat.v1.global_variables_initializer().run()
190
191
192
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])

193
  def testGlobalPoolUnknownImageShape(self):
194
    tf.compat.v1.reset_default_graph()
pkulzc's avatar
pkulzc committed
195
196
    batch_size = 1
    height, width = 250, 300
197
198
199
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
200
201
      inputs = tf.compat.v1.placeholder(
          tf.float32, shape=(batch_size, None, None, 3))
202
203
204
205
206
207
208
      logits, end_points = inception.inception_v1(inputs, num_classes,
                                                  global_pool=True)
      self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
209
      tf.compat.v1.global_variables_initializer().run()
210
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
pkulzc's avatar
pkulzc committed
211
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 10, 1024])
212

213
214
215
216
217
  def testUnknowBatchSize(self):
    batch_size = 1
    height, width = 224, 224
    num_classes = 1000

218
    inputs = tf.compat.v1.placeholder(tf.float32, (None, height, width, 3))
219
220
221
222
    logits, _ = inception.inception_v1(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [None, num_classes])
223
    images = tf.random.uniform((batch_size, height, width, 3))
224
225

    with self.test_session() as sess:
226
      sess.run(tf.compat.v1.global_variables_initializer())
227
228
229
230
231
232
233
234
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEquals(output.shape, (batch_size, num_classes))

  def testEvaluation(self):
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000

235
    eval_inputs = tf.random.uniform((batch_size, height, width, 3))
236
237
    logits, _ = inception.inception_v1(eval_inputs, num_classes,
                                       is_training=False)
238
    predictions = tf.argmax(input=logits, axis=1)
239
240

    with self.test_session() as sess:
241
      sess.run(tf.compat.v1.global_variables_initializer())
242
243
244
245
246
247
248
249
250
      output = sess.run(predictions)
      self.assertEquals(output.shape, (batch_size,))

  def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 224, 224
    num_classes = 1000

251
    train_inputs = tf.random.uniform((train_batch_size, height, width, 3))
252
    inception.inception_v1(train_inputs, num_classes)
253
    eval_inputs = tf.random.uniform((eval_batch_size, height, width, 3))
254
    logits, _ = inception.inception_v1(eval_inputs, num_classes, reuse=True)
255
    predictions = tf.argmax(input=logits, axis=1)
256
257

    with self.test_session() as sess:
258
      sess.run(tf.compat.v1.global_variables_initializer())
259
260
261
262
263
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,))

  def testLogitsNotSqueezed(self):
    num_classes = 25
264
    images = tf.random.uniform([1, 224, 224, 3])
265
266
267
268
269
    logits, _ = inception.inception_v1(images,
                                       num_classes=num_classes,
                                       spatial_squeeze=False)

    with self.test_session() as sess:
270
      tf.compat.v1.global_variables_initializer().run()
271
272
273
      logits_out = sess.run(logits)
      self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])

274
275
276
  def testNoBatchNormScaleByDefault(self):
    height, width = 224, 224
    num_classes = 1000
277
    inputs = tf.compat.v1.placeholder(tf.float32, (1, height, width, 3))
278
279
280
    with slim.arg_scope(inception.inception_v1_arg_scope()):
      inception.inception_v1(inputs, num_classes, is_training=False)

281
    self.assertEqual(tf.compat.v1.global_variables('.*/BatchNorm/gamma:0$'), [])
282
283
284
285

  def testBatchNormScale(self):
    height, width = 224, 224
    num_classes = 1000
286
    inputs = tf.compat.v1.placeholder(tf.float32, (1, height, width, 3))
287
288
289
290
291
    with slim.arg_scope(
        inception.inception_v1_arg_scope(batch_norm_scale=True)):
      inception.inception_v1(inputs, num_classes, is_training=False)

    gamma_names = set(
292
293
        v.op.name
        for v in tf.compat.v1.global_variables('.*/BatchNorm/gamma:0$'))
294
    self.assertGreater(len(gamma_names), 0)
295
    for v in tf.compat.v1.global_variables('.*/BatchNorm/moving_mean:0$'):
296
297
      self.assertIn(v.op.name[:-len('moving_mean')] + 'gamma', gamma_names)

298
299
300

if __name__ == '__main__':
  tf.test.main()