i3d.py 6.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the definition for Inflated 3D Inception V1 (I3D).

The network architecture is proposed by:
  Joao Carreira and Andrew Zisserman,
  Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset.
  https://arxiv.org/abs/1705.07750
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
28
from tensorflow.contrib import slim as contrib_slim
29
30
31
32

from nets import i3d_utils
from nets import s3dg

33
slim = contrib_slim
34
35
36
37

# pylint: disable=g-long-lambda
trunc_normal = lambda stddev: tf.compat.v1.truncated_normal_initializer(
    0.0, stddev)
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
conv3d_spatiotemporal = i3d_utils.conv3d_spatiotemporal


def i3d_arg_scope(weight_decay=1e-7,
                  batch_norm_decay=0.999,
                  batch_norm_epsilon=0.001,
                  use_renorm=False,
                  separable_conv3d=False):
  """Defines default arg_scope for I3D.

  Args:
    weight_decay: The weight decay to use for regularizing the model.
    batch_norm_decay: Decay for batch norm moving average.
    batch_norm_epsilon: Small float added to variance to avoid dividing by zero
      in batch norm.
    use_renorm: Whether to use batch renormalization or not.
    separable_conv3d: Whether to use separable 3d Convs.

  Returns:
    sc: An arg_scope to use for the models.
  """
  batch_norm_params = {
      # Decay for the moving averages.
      'decay': batch_norm_decay,
      # epsilon to prevent 0s in variance.
      'epsilon': batch_norm_epsilon,
      # Turns off fused batch norm.
      'fused': False,
      'renorm': use_renorm,
      # collection containing the moving mean and moving variance.
      'variables_collections': {
          'beta': None,
          'gamma': None,
          'moving_mean': ['moving_vars'],
          'moving_variance': ['moving_vars'],
      }
  }

  with slim.arg_scope(
      [slim.conv3d, conv3d_spatiotemporal],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      activation_fn=tf.nn.relu,
      normalizer_fn=slim.batch_norm,
      normalizer_params=batch_norm_params):
    with slim.arg_scope(
        [conv3d_spatiotemporal], separable=separable_conv3d) as sc:
      return sc


def i3d_base(inputs, final_endpoint='Mixed_5c',
             scope='InceptionV1'):
  """Defines the I3D base architecture.

  Note that we use the names as defined in Inception V1 to facilitate checkpoint
  conversion from an image-trained Inception V1 checkpoint to I3D checkpoint.

  Args:
    inputs: A 5-D float tensor of size [batch_size, num_frames, height, width,
      channels].
    final_endpoint: Specifies the endpoint to construct the network up to. It
      can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
      'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
      'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e',
      'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b', 'Mixed_5c']
    scope: Optional variable_scope.

  Returns:
    A dictionary from components of the network to the corresponding activation.

  Raises:
    ValueError: if final_endpoint is not set to one of the predefined values.
  """

  return s3dg.s3dg_base(
      inputs,
      first_temporal_kernel_size=7,
      temporal_conv_startat='Conv2d_2c_3x3',
      gating_startat=None,
      final_endpoint=final_endpoint,
      min_depth=16,
      depth_multiplier=1.0,
      data_format='NDHWC',
      scope=scope)


def i3d(inputs,
        num_classes=1000,
        dropout_keep_prob=0.8,
        is_training=True,
        prediction_fn=slim.softmax,
        spatial_squeeze=True,
        reuse=None,
        scope='InceptionV1'):
  """Defines the I3D architecture.

  The default image size used to train this network is 224x224.

  Args:
    inputs: A 5-D float tensor of size [batch_size, num_frames, height, width,
      channels].
    num_classes: number of predicted classes.
    dropout_keep_prob: the percentage of activation values that are retained.
    is_training: whether is training or not.
    prediction_fn: a function to get predictions out of logits.
    spatial_squeeze: if True, logits is of shape is [B, C], if false logits is
        of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.

  Returns:
    logits: the pre-softmax activations, a tensor of size
      [batch_size, num_classes]
    end_points: a dictionary from components of the network to the corresponding
      activation.
  """
  # Final pooling and prediction
155
  with tf.compat.v1.variable_scope(
156
157
158
159
      scope, 'InceptionV1', [inputs, num_classes], reuse=reuse) as scope:
    with slim.arg_scope(
        [slim.batch_norm, slim.dropout], is_training=is_training):
      net, end_points = i3d_base(inputs, scope=scope)
160
      with tf.compat.v1.variable_scope('Logits'):
161
162
163
164
165
166
167
168
169
170
171
        kernel_size = i3d_utils.reduced_kernel_size_3d(net, [2, 7, 7])
        net = slim.avg_pool3d(
            net, kernel_size, stride=1, scope='AvgPool_0a_7x7')
        net = slim.dropout(net, dropout_keep_prob, scope='Dropout_0b')
        logits = slim.conv3d(
            net,
            num_classes, [1, 1, 1],
            activation_fn=None,
            normalizer_fn=None,
            scope='Conv2d_0c_1x1')
        # Temporal average pooling.
172
        logits = tf.reduce_mean(input_tensor=logits, axis=1)
173
174
175
176
177
178
179
180
181
        if spatial_squeeze:
          logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze')

        end_points['Logits'] = logits
        end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
  return logits, end_points


i3d.default_image_size = 224