README.md 2.53 KB
Newer Older
1
2
3
![TensorFlow Requirement: 1.x](https://img.shields.io/badge/TensorFlow%20Requirement-1.x-brightgreen)
![TensorFlow 2 Not Supported](https://img.shields.io/badge/TensorFlow%202%20Not%20Supported-%E2%9C%95-red.svg)

Vincent Vanhoucke's avatar
Vincent Vanhoucke committed
4
5
6
7
8
9
10
11
12
Automating the Evaluation of Crystallization Experiments
========================================================

This is a pretrained model described in the paper:

[Classification of crystallization outcomes using deep convolutional neural networks](https://arxiv.org/abs/1803.10342).

This model takes images of crystallization experiments as an input:

Vincent Vanhoucke's avatar
Vincent Vanhoucke committed
13
<img src="https://storage.googleapis.com/marco-168219-model/002s_C6_ImagerDefaults_9.jpg" alt="crystal sample" width="320" height="240" />
Vincent Vanhoucke's avatar
Vincent Vanhoucke committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

It classifies it as belonging to one of four categories: crystals, precipitate, clear, or 'others'.

The model is a variant of [Inception-v3](https://arxiv.org/abs/1512.00567) trained on data from the [MARCO](http://marco.ccr.buffalo.edu) repository.

Model
-----

The model can be downloaded from:

https://storage.googleapis.com/marco-168219-model/savedmodel.zip

Example
-------

1. Install TensorFlow and the [Google Cloud SDK](https://cloud.google.com/sdk/gcloud/).

2. Download and unzip the model:

 ```bash
 unzip savedmodel.zip
 ```

3. A sample image can be downloaded from:

 https://storage.googleapis.com/marco-168219-model/002s_C6_ImagerDefaults_9.jpg

 Convert your image into a JSON request using:

 ```bash
 python jpeg2json.py 002s_C6_ImagerDefaults_9.jpg > request.json
 ```

4. To issue a prediction, run:

 ```bash
 gcloud ml-engine local predict --model-dir=savedmodel --json-instances=request.json
 ```

The request should return normalized scores for each class:

<pre>
CLASSES                                            SCORES
[u'Crystals', u'Other', u'Precipitate', u'Clear']  [0.926338255405426, 0.026199858635663986, 0.026074528694152832, 0.021387407556176186]
</pre>

CloudML Endpoint
----------------

The model can also be accessed on [Google CloudML](https://cloud.google.com/ml-engine/) by issuing:

```bash
gcloud ml-engine predict --model marco_168219_model --json-instances request.json
```

Ask the author for access privileges to the CloudML instance.

Note
----

`002s_C6_ImagerDefaults_9.jpg` is a sample from the
[MARCO](http://marco.ccr.buffalo.edu) repository, contributed to the dataset under the [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license.

Author
------

[Vincent Vanhoucke](mailto:vanhoucke@google.com) (github: vincentvanhoucke)