common.py 16.7 KB
Newer Older
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Common util functions and classes used by both keras cifar and imagenet."""
16
17
18
19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20
import os
21

Toby Boyd's avatar
Toby Boyd committed
22
23
from absl import flags
import tensorflow as tf
24

25
from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_v2
26
import tensorflow_model_optimization as tfmot
27
from official.utils.flags import core as flags_core
28
from official.utils.misc import keras_utils
29

Shining Sun's avatar
Shining Sun committed
30
FLAGS = flags.FLAGS
Shining Sun's avatar
Shining Sun committed
31
BASE_LEARNING_RATE = 0.1  # This matches Jing's version.
32
TRAIN_TOP_1 = 'training_accuracy_top_1'
Hongkun Yu's avatar
Hongkun Yu committed
33
34
35
36
37
LR_SCHEDULE = [    # (multiplier, epoch to start) tuples
    (1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
]


38
39
40
41
42
43
44
45
46
47
48
49
class PiecewiseConstantDecayWithWarmup(
    tf.keras.optimizers.schedules.LearningRateSchedule):
  """Piecewise constant decay with warmup schedule."""

  def __init__(self, batch_size, epoch_size, warmup_epochs, boundaries,
               multipliers, compute_lr_on_cpu=True, name=None):
    super(PiecewiseConstantDecayWithWarmup, self).__init__()
    if len(boundaries) != len(multipliers) - 1:
      raise ValueError('The length of boundaries must be 1 less than the '
                       'length of multipliers')

    base_lr_batch_size = 256
Zongwei Zhou's avatar
Zongwei Zhou committed
50
    steps_per_epoch = epoch_size // batch_size
51
52

    self.rescaled_lr = BASE_LEARNING_RATE * batch_size / base_lr_batch_size
Zongwei Zhou's avatar
Zongwei Zhou committed
53
    self.step_boundaries = [float(steps_per_epoch) * x for x in boundaries]
54
    self.lr_values = [self.rescaled_lr * m for m in multipliers]
Zongwei Zhou's avatar
Zongwei Zhou committed
55
    self.warmup_steps = warmup_epochs * steps_per_epoch
56
57
58
    self.compute_lr_on_cpu = compute_lr_on_cpu
    self.name = name

59
    self.learning_rate_ops_cache = {}
60
61
62
63
64
65
66
67

  def __call__(self, step):
    if tf.executing_eagerly():
      return self._get_learning_rate(step)

    # In an eager function or graph, the current implementation of optimizer
    # repeatedly call and thus create ops for the learning rate schedule. To
    # avoid this, we cache the ops if not executing eagerly.
68
69
    graph = tf.compat.v1.get_default_graph()
    if graph not in self.learning_rate_ops_cache:
70
71
      if self.compute_lr_on_cpu:
        with tf.device('/device:CPU:0'):
72
          self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
73
      else:
74
75
        self.learning_rate_ops_cache[graph] = self._get_learning_rate(step)
    return self.learning_rate_ops_cache[graph]
76
77
78

  def _get_learning_rate(self, step):
    """Compute learning rate at given step."""
Haoyu Zhang's avatar
Haoyu Zhang committed
79
80
81
82
    with tf.compat.v1.name_scope(self.name, 'PiecewiseConstantDecayWithWarmup',
                                 [self.rescaled_lr, self.step_boundaries,
                                  self.lr_values, self.warmup_steps,
                                  self.compute_lr_on_cpu]):
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
      def warmup_lr(step):
        return self.rescaled_lr * (
            tf.cast(step, tf.float32) / tf.cast(self.warmup_steps, tf.float32))
      def piecewise_lr(step):
        return tf.compat.v1.train.piecewise_constant(
            step, self.step_boundaries, self.lr_values)
      return tf.cond(step < self.warmup_steps,
                     lambda: warmup_lr(step),
                     lambda: piecewise_lr(step))

  def get_config(self):
    return {
        'rescaled_lr': self.rescaled_lr,
        'step_boundaries': self.step_boundaries,
        'lr_values': self.lr_values,
        'warmup_steps': self.warmup_steps,
        'compute_lr_on_cpu': self.compute_lr_on_cpu,
        'name': self.name
    }


def get_optimizer(learning_rate=0.1):
105
106
  """Returns optimizer to use."""
  # The learning_rate is overwritten at the beginning of each step by callback.
107
  return gradient_descent_v2.SGD(learning_rate=learning_rate, momentum=0.9)
108
109


110
111
112
113
114
def get_callbacks(
    steps_per_epoch,
    pruning_method=None,
    enable_checkpoint_and_export=False,
    model_dir=None):
115
  """Returns common callbacks."""
116
117
118
119
  time_callback = keras_utils.TimeHistory(
      FLAGS.batch_size,
      FLAGS.log_steps,
      logdir=FLAGS.model_dir if FLAGS.enable_tensorboard else None)
120
121
  callbacks = [time_callback]

122
123
124
125
126
127
  if FLAGS.enable_tensorboard:
    tensorboard_callback = tf.keras.callbacks.TensorBoard(
        log_dir=FLAGS.model_dir)
    callbacks.append(tensorboard_callback)

  if FLAGS.profile_steps:
128
129
130
    profiler_callback = keras_utils.get_profiler_callback(
        FLAGS.model_dir,
        FLAGS.profile_steps,
Zongwei Zhou's avatar
Zongwei Zhou committed
131
132
        FLAGS.enable_tensorboard,
        steps_per_epoch)
133
134
    callbacks.append(profiler_callback)

135
136
137
138
139
140
141
142
143
144
145
146
147
  is_pruning_enabled = pruning_method is not None
  if is_pruning_enabled:
    callbacks.append(tfmot.sparsity.keras.UpdatePruningStep())
    if model_dir is not None:
      callbacks.append(tfmot.sparsity.keras.PruningSummaries(
          log_dir=model_dir, profile_batch=0))

  if enable_checkpoint_and_export:
    if model_dir is not None:
      ckpt_full_path = os.path.join(model_dir, 'model.ckpt-{epoch:04d}')
      callbacks.append(
          tf.keras.callbacks.ModelCheckpoint(ckpt_full_path,
                                             save_weights_only=True))
148
149
150
151
  return callbacks


def build_stats(history, eval_output, callbacks):
152
153
154
155
156
157
158
  """Normalizes and returns dictionary of stats.

  Args:
    history: Results of the training step. Supports both categorical_accuracy
      and sparse_categorical_accuracy.
    eval_output: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
159
160
    callbacks: a list of callbacks which might include a time history callback
      used during keras.fit.
161
162
163
164
165
166

  Returns:
    Dictionary of normalized results.
  """
  stats = {}
  if eval_output:
167
168
    stats['accuracy_top_1'] = float(eval_output[1])
    stats['eval_loss'] = float(eval_output[0])
169

170
171
172
  if history and history.history:
    train_hist = history.history
    # Gets final loss from training.
173
    stats['loss'] = float(train_hist['loss'][-1])
174
175
    # Gets top_1 training accuracy.
    if 'categorical_accuracy' in train_hist:
176
      stats[TRAIN_TOP_1] = float(train_hist['categorical_accuracy'][-1])
177
    elif 'sparse_categorical_accuracy' in train_hist:
178
      stats[TRAIN_TOP_1] = float(train_hist['sparse_categorical_accuracy'][-1])
179

180
181
182
183
184
185
186
187
188
  if not callbacks:
    return stats

  # Look for the time history callback which was used during keras.fit
  for callback in callbacks:
    if isinstance(callback, keras_utils.TimeHistory):
      timestamp_log = callback.timestamp_log
      stats['step_timestamp_log'] = timestamp_log
      stats['train_finish_time'] = callback.train_finish_time
189
190
191
      if callback.epoch_runtime_log:
        stats['avg_exp_per_second'] = callback.average_examples_per_second

192
193
194
  return stats


195
196
197
198
199
def define_keras_flags(
    dynamic_loss_scale=True,
    model=False,
    optimizer=False,
    pretrained_filepath=False):
200
  """Define flags for Keras models."""
201
202
203
  flags_core.define_base(clean=True, num_gpu=True, run_eagerly=True,
                         train_epochs=True, epochs_between_evals=True,
                         distribution_strategy=True)
204
  flags_core.define_performance(num_parallel_calls=False,
205
206
207
208
                                synthetic_data=True,
                                dtype=True,
                                all_reduce_alg=True,
                                num_packs=True,
209
210
211
212
                                tf_gpu_thread_mode=True,
                                datasets_num_private_threads=True,
                                dynamic_loss_scale=dynamic_loss_scale,
                                loss_scale=True,
213
                                fp16_implementation=True,
214
                                tf_data_experimental_slack=True,
215
                                enable_xla=True,
216
                                training_dataset_cache=True)
217
218
  flags_core.define_image()
  flags_core.define_benchmark()
219
  flags_core.define_distribution()
220
  flags.adopt_module_key_flags(flags_core)
221

Shining Sun's avatar
Shining Sun committed
222
  flags.DEFINE_boolean(name='enable_eager', default=False, help='Enable eager?')
223
  flags.DEFINE_boolean(name='skip_eval', default=False, help='Skip evaluation?')
224
225
226
227
228
229
230
231
232
  # TODO(b/135607288): Remove this flag once we understand the root cause of
  # slowdown when setting the learning phase in Keras backend.
  flags.DEFINE_boolean(
      name='set_learning_phase_to_train', default=True,
      help='If skip eval, also set Keras learning phase to 1 (training).')
  flags.DEFINE_boolean(
      name='explicit_gpu_placement', default=False,
      help='If not using distribution strategy, explicitly set device scope '
      'for the Keras training loop.')
Haoyu Zhang's avatar
Haoyu Zhang committed
233
234
  flags.DEFINE_boolean(name='use_trivial_model', default=False,
                       help='Whether to use a trivial Keras model.')
235
236
  flags.DEFINE_boolean(name='report_accuracy_metrics', default=True,
                       help='Report metrics during training and evaluation.')
237
  flags.DEFINE_boolean(name='use_tensor_lr', default=True,
238
                       help='Use learning rate tensor instead of a callback.')
239
240
241
  flags.DEFINE_boolean(
      name='enable_tensorboard', default=False,
      help='Whether to enable Tensorboard callback.')
Shining Sun's avatar
Shining Sun committed
242
  flags.DEFINE_integer(
243
244
      name='train_steps', default=None,
      help='The number of steps to run for training. If it is larger than '
245
246
      '# batches per epoch, then use # batches per epoch. This flag will be '
      'ignored if train_epochs is set to be larger than 1. ')
247
248
  flags.DEFINE_string(
      name='profile_steps', default=None,
Zongwei Zhou's avatar
Zongwei Zhou committed
249
      help='Save profiling data to model dir at given range of global steps. The '
250
251
252
253
254
      'value must be a comma separated pair of positive integers, specifying '
      'the first and last step to profile. For example, "--profile_steps=2,4" '
      'triggers the profiler to process 3 steps, starting from the 2nd step. '
      'Note that profiler has a non-trivial performance overhead, and the '
      'output file can be gigantic if profiling many steps.')
255
256
257
  flags.DEFINE_boolean(
      name='batchnorm_spatial_persistent', default=True,
      help='Enable the spacial persistent mode for CuDNN batch norm kernel.')
258
259
260
  flags.DEFINE_boolean(
      name='enable_get_next_as_optional', default=False,
      help='Enable get_next_as_optional behavior in DistributedIterator.')
Hongkun Yu's avatar
Hongkun Yu committed
261
262
263
  flags.DEFINE_boolean(
      name='enable_checkpoint_and_export', default=False,
      help='Whether to enable a checkpoint callback and export the savedmodel.')
Jing Li's avatar
Jing Li committed
264
265
266
  flags.DEFINE_string(
      name='tpu', default='', help='TPU address to connect to.')
  flags.DEFINE_integer(
267
268
269
      name='steps_per_loop',
      default=500,
      help='Number of steps per training loop. Only training step happens '
Jing Li's avatar
Jing Li committed
270
271
      'inside the loop. Callbacks will not be called inside. Will be capped at '
      'steps per epoch.')
272
273
274
275
276
277
  flags.DEFINE_boolean(
      name='use_tf_while_loop',
      default=True,
      help='Whether to build a tf.while_loop inside the training loop on the '
      'host. Setting it to True is critical to have peak performance on '
      'TPU.')
278
279
280
281
282
283
  flags.DEFINE_boolean(
      name='use_tf_keras_layers', default=False,
      help='Whether to use tf.keras.layers instead of tf.python.keras.layers.'
      'It only changes imagenet resnet model layers for now. This flag is '
      'a temporal flag during transition to tf.keras.layers. Do not use this '
      'flag for external usage. this will be removed shortly.')
Shining Sun's avatar
Shining Sun committed
284

285
286
287
288
289
290
291
  if model:
    flags.DEFINE_string('model', 'resnet50_v1.5',
                        'Name of model preset. (mobilenet, resnet50_v1.5)')
  if optimizer:
    flags.DEFINE_string('optimizer', 'resnet50_default',
                        'Name of optimizer preset. '
                        '(mobilenet_default, resnet50_default)')
Jaehong Kim's avatar
Jaehong Kim committed
292
293
294
295
296
297
298
299
    # TODO(kimjaehong): Replace as general hyper-params not only for mobilenet.
    flags.DEFINE_float('initial_learning_rate_per_sample', 0.00007,
                       'Initial value of learning rate per sample for '
                       'mobilenet_default.')
    flags.DEFINE_float('lr_decay_factor', 0.94,
                       'Learning rate decay factor for mobilenet_default.')
    flags.DEFINE_float('num_epochs_per_decay', 2.5,
                       'Number of epochs per decay for mobilenet_default.')
300
301
302
303
  if pretrained_filepath:
    flags.DEFINE_string('pretrained_filepath', '',
                        'Pretrained file path.')

304

Allen Wang's avatar
Allen Wang committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
def get_synth_data(height, width, num_channels, num_classes, dtype):
  """Creates a set of synthetic random data.

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
    dtype: Data type for features/images.

  Returns:
    A tuple of tensors representing the inputs and labels.

  """
  # Synthetic input should be within [0, 255].
  inputs = tf.random.truncated_normal([height, width, num_channels],
                                      dtype=dtype,
                                      mean=127,
                                      stddev=60,
                                      name='synthetic_inputs')
  labels = tf.random.uniform([1],
                             minval=0,
                             maxval=num_classes - 1,
                             dtype=tf.int32,
                             name='synthetic_labels')
  return inputs, labels


334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
def define_pruning_flags():
  """Define flags for pruning methods."""
  flags.DEFINE_string('pruning_method', None,
                      'Pruning method.'
                      'None (no pruning) or polynomial_decay.')
  flags.DEFINE_float('pruning_initial_sparsity', 0.0,
                     'Initial sparsity for pruning.')
  flags.DEFINE_float('pruning_final_sparsity', 0.5,
                     'Final sparsity for pruning.')
  flags.DEFINE_integer('pruning_begin_step', 0,
                       'Begin step for pruning.')
  flags.DEFINE_integer('pruning_end_step', 100000,
                       'End step for pruning.')
  flags.DEFINE_integer('pruning_frequency', 100,
                       'Frequency for pruning.')


Shining Sun's avatar
Shining Sun committed
351
def get_synth_input_fn(height, width, num_channels, num_classes,
352
                       dtype=tf.float32, drop_remainder=True):
Shining Sun's avatar
Shining Sun committed
353
354
355
356
357
  """Returns an input function that returns a dataset with random data.

  This input_fn returns a data set that iterates over a set of random data and
  bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
  copy is still included. This used to find the upper throughput bound when
Shining Sun's avatar
Shining Sun committed
358
  tuning the full input pipeline.
Shining Sun's avatar
Shining Sun committed
359
360
361
362
363
364
365
366

  Args:
    height: Integer height that will be used to create a fake image tensor.
    width: Integer width that will be used to create a fake image tensor.
    num_channels: Integer depth that will be used to create a fake image tensor.
    num_classes: Number of classes that should be represented in the fake labels
      tensor
    dtype: Data type for features/images.
367
368
    drop_remainder: A boolean indicates whether to drop the remainder of the
      batches. If True, the batch dimension will be static.
Shining Sun's avatar
Shining Sun committed
369
370
371
372
373
374
375
376

  Returns:
    An input_fn that can be used in place of a real one to return a dataset
    that can be used for iteration.
  """
  # pylint: disable=unused-argument
  def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
    """Returns dataset filled with random data."""
Allen Wang's avatar
Allen Wang committed
377
378
379
380
381
    inputs, labels = get_synth_data(height=height,
                                    width=width,
                                    num_channels=num_channels,
                                    num_classes=num_classes,
                                    dtype=dtype)
382
383
    # Cast to float32 for Keras model.
    labels = tf.cast(labels, dtype=tf.float32)
Shining Sun's avatar
Shining Sun committed
384
    data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
385
386

    # `drop_remainder` will make dataset produce outputs with known shapes.
387
    data = data.batch(batch_size, drop_remainder=drop_remainder)
388
    data = data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
Shining Sun's avatar
Shining Sun committed
389
390
391
    return data

  return input_fn
Shining Sun's avatar
Shining Sun committed
392
393


394
def set_cudnn_batchnorm_mode():
Toby Boyd's avatar
Toby Boyd committed
395
396
397
398
399
  """Set CuDNN batchnorm mode for better performance.

     Note: Spatial Persistent mode may lead to accuracy losses for certain
     models.
  """
400
401
402
  if FLAGS.batchnorm_spatial_persistent:
    os.environ['TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT'] = '1'
  else:
403
    os.environ.pop('TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT', None)