labeled_eval.py 11.8 KB
Newer Older
Corey Lynch's avatar
Corey Lynch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Generates test Recall@K statistics on labeled classification problems."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import defaultdict
import os
import numpy as np
from sklearn.metrics.pairwise import pairwise_distances
25
from six.moves import xrange
Corey Lynch's avatar
Corey Lynch committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import data_providers
from estimators.get_estimator import get_estimator
from utils import util
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)


tf.flags.DEFINE_string(
    'config_paths', '',
    """
    Path to a YAML configuration files defining FLAG values. Multiple files
    can be separated by the `#` symbol. Files are merged recursively. Setting
    a key in these files is equivalent to setting the FLAG value with
    the same name.
    """)
tf.flags.DEFINE_string(
    'model_params', '{}', 'YAML configuration string for the model parameters.')
tf.app.flags.DEFINE_string(
    'mode', 'validation',
    'Which dataset to evaluate: `validation` | `test`.')
tf.app.flags.DEFINE_string('master', 'local',
                           'BNS name of the TensorFlow master to use')
tf.app.flags.DEFINE_string(
    'checkpoint_iter', '', 'Evaluate this specific checkpoint.')
tf.app.flags.DEFINE_string(
    'checkpointdir', '/tmp/tcn', 'Path to model checkpoints.')
tf.app.flags.DEFINE_string('outdir', '/tmp/tcn', 'Path to write summaries to.')
FLAGS = tf.app.flags.FLAGS


def nearest_cross_sequence_neighbors(data, tasks, n_neighbors=1):
  """Computes the n_neighbors nearest neighbors for every row in data.

  Args:
    data: A np.float32 array of shape [num_data, embedding size] holding
      an embedded validation / test dataset.
    tasks: A list of strings of size [num_data] holding the task or sequence
      name that each row belongs to.
    n_neighbors: The number of knn indices to return for each row.
  Returns:
    indices: an np.int32 array of size [num_data, n_neighbors] holding the
      n_neighbors nearest indices for every row in data. These are
      restricted to be from different named sequences (as defined in `tasks`).
  """

  # Compute the pairwise sequence adjacency matrix from `tasks`.
  num_data = data.shape[0]
  tasks = np.array(tasks)
  tasks = np.reshape(tasks, (num_data, 1))
  assert len(tasks.shape) == 2
  not_adjacent = (tasks != tasks.T)

  # Compute the symmetric pairwise distance matrix.
  pdist = pairwise_distances(data, metric='sqeuclidean')

  # For every row in the pairwise distance matrix, only consider
  # cross-sequence columns.
  indices = np.zeros((num_data, n_neighbors), dtype=np.int32)
  for idx in range(num_data):
    # Restrict to cross_sequence neighbors.
    distances = [(
        pdist[idx][i], i) for i in xrange(num_data) if not_adjacent[idx][i]]
    _, nearest_indices = zip(*sorted(
        distances, key=lambda x: x[0])[:n_neighbors])
    indices[idx] = nearest_indices
  return indices


def compute_cross_sequence_recall_at_k(retrieved_labels, labels, k_list):
  """Compute recall@k for a given list of k values.

  Recall is one if an example of the same class is retrieved among the
    top k nearest neighbors given a query example and zero otherwise.
    Counting the recall for all examples and averaging the counts returns
    recall@k score.

  Args:
    retrieved_labels: 2-D Numpy array of KNN labels for every embedding.
    labels: 1-D Numpy array of shape [number of data].
    k_list: List of k values to evaluate recall@k.

  Returns:
    recall_list: List of recall@k values.
  """
  kvalue_to_recall = dict(zip(k_list, np.zeros(len(k_list))))

  # For each value of K.
  for k in k_list:
    matches = defaultdict(float)
    counts = defaultdict(float)
    # For each (row index, label value) in the query labels.
    for i, label_value in enumerate(labels):
      # Loop over the K nearest retrieved labels.
      if label_value in retrieved_labels[i][:k]:
        matches[label_value] += 1.
      # Increment the denominator.
      counts[label_value] += 1.
    kvalue_to_recall[k] = np.mean(
        [matches[l]/counts[l] for l in matches])
  return [kvalue_to_recall[i] for i in k_list]


def compute_cross_sequence_recalls_at_k(
    embeddings, labels, label_attr_keys, tasks, k_list, summary_writer,
    training_step):
  """Computes and reports the recall@k for each classification problem.

  This takes an embedding matrix and an array of multiclass labels
  with size [num_data, number of classification problems], then
  computes the average recall@k for each classification problem
  as well as the average across problems.

  Args:
    embeddings: A np.float32 array of size [num_data, embedding_size]
      representing the embedded validation or test dataset.
    labels: A np.int32 array of size [num_data, num_classification_problems]
      holding multiclass labels for each embedding for each problem.
    label_attr_keys: List of strings, holds the names of the classification
      problems.
    tasks: A list of strings describing the video sequence each row
      belongs to. This is used to restrict the recall@k computation
      to cross-sequence examples.
    k_list: A list of ints, the k values to evaluate recall@k.
    summary_writer: A tf.summary.FileWriter.
    training_step: Int, the current training step we're evaluating.
  """
  num_data = float(embeddings.shape[0])
  assert labels.shape[0] == num_data

  # Compute knn indices.
  indices = nearest_cross_sequence_neighbors(
      embeddings, tasks, n_neighbors=max(k_list))
  retrieved_labels = labels[indices]

  # Compute the recall@k for each classification problem.
  recall_lists = []
  for idx, label_attr in enumerate(label_attr_keys):
    problem_labels = labels[:, idx]
    # Take all indices, all k labels for the problem indexed by idx.
    problem_retrieved = retrieved_labels[:, :, idx]
    recall_list = compute_cross_sequence_recall_at_k(
        retrieved_labels=problem_retrieved,
        labels=problem_labels,
        k_list=k_list)
    recall_lists.append(recall_list)
    for (k, recall) in zip(k_list, recall_list):
      recall_error = 1-recall
      summ = tf.Summary(value=[tf.Summary.Value(
          tag='validation/classification/%s error@top%d' % (
              label_attr, k),
          simple_value=recall_error)])
      print('%s recall@K=%d' % (label_attr, k), recall_error)
      summary_writer.add_summary(summ, int(training_step))

  # Report an average recall@k across problems.
  recall_lists = np.array(recall_lists)
  for i in range(recall_lists.shape[1]):
    average_recall = np.mean(recall_lists[:, i])
    recall_error = 1 - average_recall
    summ = tf.Summary(value=[tf.Summary.Value(
        tag='validation/classification/average error@top%d' % k_list[i],
        simple_value=recall_error)])
    print('Average recall@K=%d' % k_list[i], recall_error)
    summary_writer.add_summary(summ, int(training_step))


def evaluate_once(
    estimator, input_fn_by_view, batch_size, checkpoint_path,
    label_attr_keys, embedding_size, num_views, k_list):
  """Compute the recall@k for a given checkpoint path.

  Args:
    estimator: an `Estimator` object to evaluate.
    input_fn_by_view: An input_fn to an `Estimator's` predict method. Takes
      a view index and returns a dict holding ops for getting raw images for
      the view.
    batch_size: Int, size of the labeled eval batch.
    checkpoint_path: String, path to the specific checkpoint being evaluated.
    label_attr_keys: A list of Strings, holding each attribute name.
    embedding_size: Int, the size of the embedding.
    num_views: Int, number of views in the dataset.
    k_list: List of ints, list of K values to compute recall at K for.
  """
  feat_matrix = np.zeros((0, embedding_size))
  label_vect = np.zeros((0, len(label_attr_keys)))
  tasks = []
  eval_tensor_keys = ['embeddings', 'tasks', 'classification_labels']

  # Iterate all views in the dataset.
  for view_index in range(num_views):
    # Set up a graph for embedding entire dataset.
    predictions = estimator.inference(
        input_fn_by_view(view_index), checkpoint_path,
        batch_size, predict_keys=eval_tensor_keys)

    # Enumerate predictions.
    for i, p in enumerate(predictions):
      if i % 100 == 0:
        tf.logging.info('Embedded %d images for view %d' % (i, view_index))

      label = p['classification_labels']
      task = p['tasks']
      embedding = p['embeddings']

      # Collect (embedding, label, task) data.
      feat_matrix = np.append(feat_matrix, [embedding], axis=0)
      label_vect = np.append(label_vect, [label], axis=0)
      tasks.append(task)

  # Compute recall statistics.
  ckpt_step = int(checkpoint_path.split('-')[-1])
  summary_dir = os.path.join(FLAGS.outdir, 'labeled_eval_summaries')
  summary_writer = tf.summary.FileWriter(summary_dir)
  compute_cross_sequence_recalls_at_k(
      feat_matrix, label_vect, label_attr_keys, tasks, k_list,
      summary_writer, ckpt_step)


def get_labeled_tables(config):
  """Gets either labeled test or validation tables, based on flags."""
  # Get a list of filenames corresponding to labeled data.
  mode = FLAGS.mode
  if mode == 'validation':
    labeled_tables = util.GetFilesRecursively(config.data.labeled.validation)
  elif mode == 'test':
    labeled_tables = util.GetFilesRecursively(config.data.labeled.test)
  else:
    raise ValueError('Unknown dataset: %s' % mode)
  return labeled_tables


def main(_):
  """Runs main labeled eval loop."""
  # Parse config dict from yaml config files / command line flags.
  config = util.ParseConfigsToLuaTable(FLAGS.config_paths, FLAGS.model_params)

  # Choose an estimator based on training strategy.
  checkpointdir = FLAGS.checkpointdir
  estimator = get_estimator(config, checkpointdir)

  # Get data configs.
  image_attr_keys = config.data.labeled.image_attr_keys
  label_attr_keys = config.data.labeled.label_attr_keys
  embedding_size = config.embedding_size
  num_views = config.data.num_views
  k_list = config.val.recall_at_k_list
  batch_size = config.data.batch_size

  # Get either labeled validation or test tables.
  labeled_tables = get_labeled_tables(config)

  def input_fn_by_view(view_index):
    """Returns an input_fn for use with a tf.Estimator by view."""
    def input_fn():
      # Get raw labeled images.
      (preprocessed_images, labels,
       tasks) = data_providers.labeled_data_provider(
           labeled_tables,
           estimator.preprocess_data, view_index, image_attr_keys,
           label_attr_keys, batch_size=batch_size)
      return {
          'batch_preprocessed': preprocessed_images,
          'tasks': tasks,
          'classification_labels': labels,
      }, None
    return input_fn

  # If evaluating a specific checkpoint, do that.
  if FLAGS.checkpoint_iter:
    checkpoint_path = os.path.join(
        '%s/model.ckpt-%s' % (checkpointdir, FLAGS.checkpoint_iter))
    evaluate_once(
        estimator, input_fn_by_view, batch_size, checkpoint_path,
        label_attr_keys, embedding_size, num_views, k_list)
  else:
    for checkpoint_path in tf.contrib.training.checkpoints_iterator(
        checkpointdir):
      evaluate_once(
          estimator, input_fn_by_view, batch_size, checkpoint_path,
          label_attr_keys, embedding_size, num_views, k_list)


if __name__ == '__main__':
  tf.app.run()