imnet_formatting.py 3.22 KB
Newer Older
Laurent Dinh's avatar
Laurent Dinh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

r"""LSUN dataset formatting.

Download and format the Imagenet dataset as follow:
mkdir [IMAGENET_PATH]
cd [IMAGENET_PATH]
for FILENAME in train_32x32.tar valid_32x32.tar train_64x64.tar valid_64x64.tar
do
    curl -O http://image-net.org/small/$FILENAME
    tar -xvf $FILENAME
done

Then use the script as follow:
for DIRNAME in train_32x32 valid_32x32 train_64x64 valid_64x64
do
    python imnet_formatting.py \
        --file_out $DIRNAME \
        --fn_root $DIRNAME
done

"""

37
38
from __future__ import print_function

Laurent Dinh's avatar
Laurent Dinh committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import os.path

import scipy.io
import scipy.io.wavfile
import scipy.ndimage
import tensorflow as tf


tf.flags.DEFINE_string("file_out", "",
                       "Filename of the output .tfrecords file.")
tf.flags.DEFINE_string("fn_root", "", "Name of root file path.")

FLAGS = tf.flags.FLAGS


def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))


def _bytes_feature(value):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))


def main():
    """Main converter function."""
    # LSUN
    fn_root = FLAGS.fn_root
    img_fn_list = os.listdir(fn_root)
    img_fn_list = [img_fn for img_fn in img_fn_list
                   if img_fn.endswith('.png')]
    num_examples = len(img_fn_list)

    n_examples_per_file = 10000
    for example_idx, img_fn in enumerate(img_fn_list):
        if example_idx % n_examples_per_file == 0:
            file_out = "%s_%05d.tfrecords"
            file_out = file_out % (FLAGS.file_out,
                                   example_idx // n_examples_per_file)
78
            print("Writing on:", file_out)
Laurent Dinh's avatar
Laurent Dinh committed
79
80
            writer = tf.python_io.TFRecordWriter(file_out)
        if example_idx % 1000 == 0:
81
            print(example_idx, "/", num_examples)
Laurent Dinh's avatar
Laurent Dinh committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        image_raw = scipy.ndimage.imread(os.path.join(fn_root, img_fn))
        rows = image_raw.shape[0]
        cols = image_raw.shape[1]
        depth = image_raw.shape[2]
        image_raw = image_raw.astype("uint8")
        image_raw = image_raw.tostring()
        example = tf.train.Example(
            features=tf.train.Features(
                feature={
                    "height": _int64_feature(rows),
                    "width": _int64_feature(cols),
                    "depth": _int64_feature(depth),
                    "image_raw": _bytes_feature(image_raw)
                }
            )
        )
        writer.write(example.SerializeToString())
        if example_idx % n_examples_per_file == (n_examples_per_file - 1):
            writer.close()
    writer.close()


if __name__ == "__main__":
    main()