seq2seq.py 9.42 KB
Newer Older
Andrew M. Dai's avatar
Andrew M. Dai committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Simple seq2seq model definitions."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
23
from six.moves import xrange
Andrew M. Dai's avatar
Andrew M. Dai committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from models import attention_utils

# ZoneoutWrapper.
from regularization import zoneout

FLAGS = tf.app.flags.FLAGS


def transform_input_with_is_missing_token(inputs, targets_present):
  """Transforms the inputs to have missing tokens when it's masked out.  The
  mask is for the targets, so therefore, to determine if an input at time t is
  masked, we have to check if the target at time t - 1 is masked out.

  e.g.
    inputs = [a, b, c, d]
    targets = [b, c, d, e]
    targets_present = [1, 0, 1, 0]

  then,
    transformed_input = [a, b, <missing>, d]

  Args:
    inputs:  tf.int32 Tensor of shape [batch_size, sequence_length] with tokens
      up to, but not including, vocab_size.
    targets_present:  tf.bool Tensor of shape [batch_size, sequence_length] with
      True representing the presence of the word.

  Returns:
    transformed_input:  tf.int32 Tensor of shape [batch_size, sequence_length]
      which takes on value of inputs when the input is present and takes on
      value=vocab_size to indicate a missing token.
  """
  # To fill in if the input is missing.
  input_missing = tf.constant(
      FLAGS.vocab_size,
      dtype=tf.int32,
      shape=[FLAGS.batch_size, FLAGS.sequence_length])

  # The 0th input will always be present to MaskGAN.
  zeroth_input_present = tf.constant(True, tf.bool, shape=[FLAGS.batch_size, 1])

  # Input present mask.
  inputs_present = tf.concat(
      [zeroth_input_present, targets_present[:, :-1]], axis=1)

  transformed_input = tf.where(inputs_present, inputs, input_missing)
  return transformed_input


def gen_encoder(hparams, inputs, targets_present, is_training, reuse=None):
  """Define the Encoder graph."""
  # We will use the same variable from the decoder.
  if FLAGS.seq2seq_share_embedding:
    with tf.variable_scope('decoder/rnn'):
      embedding = tf.get_variable('embedding',
                                  [FLAGS.vocab_size, hparams.gen_rnn_size])

  with tf.variable_scope('encoder', reuse=reuse):

    def lstm_cell():
      return tf.contrib.rnn.LayerNormBasicLSTMCell(
          hparams.gen_rnn_size, reuse=reuse)

    attn_cell = lstm_cell
    if FLAGS.zoneout_drop_prob > 0.0:

      def attn_cell():
        return zoneout.ZoneoutWrapper(
            lstm_cell(),
            zoneout_drop_prob=FLAGS.zoneout_drop_prob,
            is_training=is_training)

    cell = tf.contrib.rnn.MultiRNNCell(
        [attn_cell() for _ in range(hparams.gen_num_layers)],
        state_is_tuple=True)

    initial_state = cell.zero_state(FLAGS.batch_size, tf.float32)

    # Add a missing token for inputs not present.
    real_inputs = inputs
    masked_inputs = transform_input_with_is_missing_token(
        inputs, targets_present)

    with tf.variable_scope('rnn'):
      hidden_states = []

      embedding = tf.get_variable('embedding',
                                  [FLAGS.vocab_size + 1, hparams.gen_rnn_size])

      real_rnn_inputs = tf.nn.embedding_lookup(embedding, real_inputs)
      masked_rnn_inputs = tf.nn.embedding_lookup(embedding, masked_inputs)

      state = initial_state
      for t in xrange(FLAGS.sequence_length):
        if t > 0:
          tf.get_variable_scope().reuse_variables()

        rnn_inp = masked_rnn_inputs[:, t]
        rnn_out, state = cell(rnn_inp, state)
        hidden_states.append(rnn_out)
      final_masked_state = state
      hidden_states = tf.stack(hidden_states, axis=1)

      # Produce the RNN state had the model operated only
      # over real data.
      real_state = initial_state
      for t in xrange(FLAGS.sequence_length):
        tf.get_variable_scope().reuse_variables()

        # RNN.
        rnn_inp = real_rnn_inputs[:, t]
        rnn_out, real_state = cell(rnn_inp, real_state)
      final_state = real_state

  return (hidden_states, final_masked_state), initial_state, final_state


def gen_decoder(hparams,
                inputs,
                targets,
                targets_present,
                encoding_state,
                is_training,
                is_validating,
                reuse=None):
  """Define the Decoder graph. The Decoder will now impute tokens that
      have been masked from the input seqeunce.
  """
  gen_decoder_rnn_size = hparams.gen_rnn_size

  with tf.variable_scope('decoder', reuse=reuse):

    def lstm_cell():
      return tf.contrib.rnn.LayerNormBasicLSTMCell(
          gen_decoder_rnn_size, reuse=reuse)

    attn_cell = lstm_cell
    if FLAGS.zoneout_drop_prob > 0.0:

      def attn_cell():
        return zoneout.ZoneoutWrapper(
            lstm_cell(),
            zoneout_drop_prob=FLAGS.zoneout_drop_prob,
            is_training=is_training)

    cell_gen = tf.contrib.rnn.MultiRNNCell(
        [attn_cell() for _ in range(hparams.gen_num_layers)],
        state_is_tuple=True)

    # Hidden encoder states.
    hidden_vector_encodings = encoding_state[0]

    # Carry forward the final state tuple from the encoder.
    # State tuples.
    state_gen = encoding_state[1]

    if FLAGS.attention_option is not None:
      (attention_keys, attention_values, _,
       attention_construct_fn) = attention_utils.prepare_attention(
           hidden_vector_encodings,
           FLAGS.attention_option,
           num_units=gen_decoder_rnn_size,
           reuse=reuse)

    with tf.variable_scope('rnn'):
      sequence, logits, log_probs = [], [], []
      embedding = tf.get_variable('embedding',
                                  [FLAGS.vocab_size, gen_decoder_rnn_size])
      softmax_w = tf.get_variable('softmax_w',
                                  [gen_decoder_rnn_size, FLAGS.vocab_size])
      softmax_b = tf.get_variable('softmax_b', [FLAGS.vocab_size])

      rnn_inputs = tf.nn.embedding_lookup(embedding, inputs)

      for t in xrange(FLAGS.sequence_length):
        if t > 0:
          tf.get_variable_scope().reuse_variables()

        # Input to the Decoder.
        if t == 0:
          # Always provide the real input at t = 0.
          rnn_inp = rnn_inputs[:, t]

        # If the input is present, read in the input at t.
        # If the input is not present, read in the previously generated.
        else:
          real_rnn_inp = rnn_inputs[:, t]
          fake_rnn_inp = tf.nn.embedding_lookup(embedding, fake)

          # While validating, the decoder should be operating in teacher
          # forcing regime.  Also, if we're just training with cross_entropy
          # use teacher forcing.
          if is_validating or (is_training and
                               FLAGS.gen_training_strategy == 'cross_entropy'):
            rnn_inp = real_rnn_inp
          else:
            rnn_inp = tf.where(targets_present[:, t - 1], real_rnn_inp,
                               fake_rnn_inp)

        # RNN.
        rnn_out, state_gen = cell_gen(rnn_inp, state_gen)

        if FLAGS.attention_option is not None:
          rnn_out = attention_construct_fn(rnn_out, attention_keys,
                                           attention_values)
        #   # TODO(liamfedus): Assert not "monotonic" attention_type.
        #   # TODO(liamfedus): FLAGS.attention_type.
        #   context_state = revised_attention_utils._empty_state()
        #   rnn_out, context_state = attention_construct_fn(
        #       rnn_out, attention_keys, attention_values, context_state, t)
        logit = tf.matmul(rnn_out, softmax_w) + softmax_b

        # Output for Decoder.
        # If input is present:   Return real at t+1.
        # If input is not present:  Return fake for t+1.
        real = targets[:, t]

        categorical = tf.contrib.distributions.Categorical(logits=logit)
        fake = categorical.sample()
        log_prob = categorical.log_prob(fake)

        output = tf.where(targets_present[:, t], real, fake)

        # Add to lists.
        sequence.append(output)
        log_probs.append(log_prob)
        logits.append(logit)

  return (tf.stack(sequence, axis=1), tf.stack(logits, axis=1), tf.stack(
      log_probs, axis=1))


def generator(hparams,
              inputs,
              targets,
              targets_present,
              is_training,
              is_validating,
              reuse=None):
  """Define the Generator graph."""
  with tf.variable_scope('gen', reuse=reuse):
    encoder_states, initial_state, final_state = gen_encoder(
        hparams, inputs, targets_present, is_training=is_training, reuse=reuse)
    stacked_sequence, stacked_logits, stacked_log_probs = gen_decoder(
        hparams,
        inputs,
        targets,
        targets_present,
        encoder_states,
        is_training=is_training,
        is_validating=is_validating,
        reuse=reuse)
    return (stacked_sequence, stacked_logits, stacked_log_probs, initial_state,
            final_state)