critic_vd.py 3.82 KB
Newer Older
Andrew M. Dai's avatar
Andrew M. Dai committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Critic model definitions."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

22
from six.moves import xrange
Andrew M. Dai's avatar
Andrew M. Dai committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import tensorflow as tf
from regularization import variational_dropout

FLAGS = tf.app.flags.FLAGS


def critic_seq2seq_vd_derivative(hparams, sequence, is_training, reuse=None):
  """Define the Critic graph which is derived from the seq2seq_vd
  Discriminator.  This will be initialized with the same parameters as the
  language model and will share the forward RNN components with the
  Discriminator.   This estimates the V(s_t), where the state
  s_t = x_0,...,x_t-1.
  """
  assert FLAGS.discriminator_model == 'seq2seq_vd'
  sequence = tf.cast(sequence, tf.int32)

  if FLAGS.dis_share_embedding:
    assert hparams.dis_rnn_size == hparams.gen_rnn_size, (
        'If you wish to share Discriminator/Generator embeddings, they must be'
        ' same dimension.')
    with tf.variable_scope('gen/decoder/rnn', reuse=True):
      embedding = tf.get_variable('embedding',
                                  [FLAGS.vocab_size, hparams.gen_rnn_size])
  else:
    with tf.variable_scope('dis/decoder/rnn', reuse=True):
      embedding = tf.get_variable('embedding',
                                  [FLAGS.vocab_size, hparams.dis_rnn_size])

  with tf.variable_scope(
      'dis/decoder/rnn/multi_rnn_cell', reuse=True) as dis_scope:

    def lstm_cell():
      return tf.contrib.rnn.BasicLSTMCell(
          hparams.dis_rnn_size,
          forget_bias=0.0,
          state_is_tuple=True,
          reuse=True)

    attn_cell = lstm_cell
    if is_training and hparams.dis_vd_keep_prob < 1:

      def attn_cell():
        return variational_dropout.VariationalDropoutWrapper(
            lstm_cell(), FLAGS.batch_size, hparams.dis_rnn_size,
            hparams.dis_vd_keep_prob, hparams.dis_vd_keep_prob)

    cell_critic = tf.contrib.rnn.MultiRNNCell(
        [attn_cell() for _ in range(hparams.dis_num_layers)],
        state_is_tuple=True)

  with tf.variable_scope('critic', reuse=reuse):
    state_dis = cell_critic.zero_state(FLAGS.batch_size, tf.float32)

    def make_mask(keep_prob, units):
      random_tensor = keep_prob
      # 0. if [keep_prob, 1.0) and 1. if [1.0, 1.0 + keep_prob)
      random_tensor += tf.random_uniform(tf.stack([FLAGS.batch_size, units]))
      return tf.floor(random_tensor) / keep_prob

    if is_training:
      output_mask = make_mask(hparams.dis_vd_keep_prob, hparams.dis_rnn_size)

    with tf.variable_scope('rnn') as vs:
      values = []

      rnn_inputs = tf.nn.embedding_lookup(embedding, sequence)

      for t in xrange(FLAGS.sequence_length):
        if t > 0:
          tf.get_variable_scope().reuse_variables()

        if t == 0:
          rnn_in = tf.zeros_like(rnn_inputs[:, 0])
        else:
          rnn_in = rnn_inputs[:, t - 1]
        rnn_out, state_dis = cell_critic(rnn_in, state_dis, scope=dis_scope)

        if is_training:
          rnn_out *= output_mask

        # Prediction is linear output for Discriminator.
        value = tf.contrib.layers.linear(rnn_out, 1, scope=vs)

        values.append(value)
  values = tf.stack(values, axis=1)
  return tf.squeeze(values, axis=2)