semantic_segmentation_test.py 5.5 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Test for semantic segmentation export lib."""

import io
import os

from absl.testing import parameterized
import numpy as np
from PIL import Image
import tensorflow as tf

from official.core import exp_factory
from official.vision import registry_imports  # pylint: disable=unused-import
from official.vision.serving import semantic_segmentation


class SemanticSegmentationExportTest(tf.test.TestCase, parameterized.TestCase):

32
33
34
35
36
  def _get_segmentation_module(self,
                               input_type,
                               rescale_output,
                               preserve_aspect_ratio,
                               batch_size=1):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
37
    params = exp_factory.get_exp_config('mnv2_deeplabv3_pascal')
38
39
    params.task.export_config.rescale_output = rescale_output
    params.task.train_data.preserve_aspect_ratio = preserve_aspect_ratio
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
40
41
    segmentation_module = semantic_segmentation.SegmentationModule(
        params,
42
        batch_size=batch_size,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
43
44
45
46
47
48
49
50
51
        input_image_size=[112, 112],
        input_type=input_type)
    return segmentation_module

  def _export_from_module(self, module, input_type, save_directory):
    signatures = module.get_inference_signatures(
        {input_type: 'serving_default'})
    tf.saved_model.save(module, save_directory, signatures=signatures)

52
  def _get_dummy_input(self, input_type, input_image_size):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
53
54
    """Get dummy input for the given input type."""

55
56
    height = input_image_size[0]
    width = input_image_size[1]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
57
    if input_type == 'image_tensor':
58
      return tf.zeros((1, height, width, 3), dtype=np.uint8)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
59
    elif input_type == 'image_bytes':
60
      image = Image.fromarray(np.zeros((height, width, 3), dtype=np.uint8))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
61
62
63
64
      byte_io = io.BytesIO()
      image.save(byte_io, 'PNG')
      return [byte_io.getvalue()]
    elif input_type == 'tf_example':
65
      image_tensor = tf.zeros((height, width, 3), dtype=tf.uint8)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
66
67
68
69
70
71
72
73
74
75
      encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).numpy()
      example = tf.train.Example(
          features=tf.train.Features(
              feature={
                  'image/encoded':
                      tf.train.Feature(
                          bytes_list=tf.train.BytesList(value=[encoded_jpeg])),
              })).SerializeToString()
      return [example]
    elif input_type == 'tflite':
76
      return tf.zeros((1, height, width, 3), dtype=np.float32)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
77
78

  @parameterized.parameters(
79
80
81
82
83
84
85
      ('image_tensor', False, [112, 112], False),
      ('image_bytes', False, [112, 112], False),
      ('tf_example', False, [112, 112], True),
      ('tflite', False, [112, 112], False),
      ('image_tensor', True, [112, 56], True),
      ('image_bytes', True, [112, 56], True),
      ('tf_example', True, [56, 112], False),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
86
  )
87
88
  def test_export(self, input_type, rescale_output, input_image_size,
                  preserve_aspect_ratio):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
89
    tmp_dir = self.get_temp_dir()
90
91
92
93
    module = self._get_segmentation_module(
        input_type=input_type,
        rescale_output=rescale_output,
        preserve_aspect_ratio=preserve_aspect_ratio)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107

    self._export_from_module(module, input_type, tmp_dir)

    self.assertTrue(os.path.exists(os.path.join(tmp_dir, 'saved_model.pb')))
    self.assertTrue(
        os.path.exists(os.path.join(tmp_dir, 'variables', 'variables.index')))
    self.assertTrue(
        os.path.exists(
            os.path.join(tmp_dir, 'variables',
                         'variables.data-00000-of-00001')))

    imported = tf.saved_model.load(tmp_dir)
    segmentation_fn = imported.signatures['serving_default']

108
    images = self._get_dummy_input(input_type, input_image_size)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
109
110
111
112
113
114
115
116
117
118
119
120
    if input_type != 'tflite':
      processed_images, _ = tf.nest.map_structure(
          tf.stop_gradient,
          tf.map_fn(
              module._build_inputs,
              elems=tf.zeros((1, 112, 112, 3), dtype=tf.uint8),
              fn_output_signature=(tf.TensorSpec(
                  shape=[112, 112, 3], dtype=tf.float32),
                                   tf.TensorSpec(
                                       shape=[4, 2], dtype=tf.float32))))
    else:
      processed_images = images
121
122
123
124
125
126
127

    logits = module.model(processed_images, training=False)['logits']
    if rescale_output:
      expected_output = tf.image.resize(
          logits, input_image_size, method='bilinear')
    else:
      expected_output = tf.image.resize(logits, [112, 112], method='bilinear')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
128
129
130
    out = segmentation_fn(tf.constant(images))
    self.assertAllClose(out['logits'].numpy(), expected_output.numpy())

131
132
133
134
135
136
137
138
139
140
141
142
  def test_export_invalid_batch_size(self):
    batch_size = 3
    tmp_dir = self.get_temp_dir()
    module = self._get_segmentation_module(
        input_type='image_tensor',
        rescale_output=True,
        preserve_aspect_ratio=False,
        batch_size=batch_size)
    with self.assertRaisesRegex(ValueError,
                                'Batch size cannot be more than 1.'):
      self._export_from_module(module, 'image_tensor', tmp_dir)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
143
144
145

if __name__ == '__main__':
  tf.test.main()