resnet_model.py 10.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ResNet50 model for Keras.

Adapted from tf.keras.applications.resnet50.ResNet50().
Shining Sun's avatar
Shining Sun committed
18
This is ResNet model version 1.5.
19
20
21
22
23
24
25
26
27
28
29
30

Related papers/blogs:
- https://arxiv.org/abs/1512.03385
- https://arxiv.org/pdf/1603.05027v2.pdf
- http://torch.ch/blog/2016/02/04/resnets.html

"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.python.keras import backend
Zongwei Zhou's avatar
Zongwei Zhou committed
31
from tensorflow.python.keras import initializers
32
33
34
35
36
37
38
39
40
41
from tensorflow.python.keras import layers
from tensorflow.python.keras import models
from tensorflow.python.keras import regularizers


L2_WEIGHT_DECAY = 1e-4
BATCH_NORM_DECAY = 0.9
BATCH_NORM_EPSILON = 1e-5


Zongwei Zhou's avatar
Zongwei Zhou committed
42
43
44
45
46
47
48
49
50
51
def _gen_l2_regularizer(use_l2_regularizer=True):
  return regularizers.l2(L2_WEIGHT_DECAY) if use_l2_regularizer else None


def identity_block(input_tensor,
                   kernel_size,
                   filters,
                   stage,
                   block,
                   use_l2_regularizer=True):
52
53
  """The identity block is the block that has no conv layer at shortcut.

54
55
56
57
58
59
  Args:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
    block: 'a','b'..., current block label, used for generating layer names
Zongwei Zhou's avatar
Zongwei Zhou committed
60
    use_l2_regularizer: whether to use L2 regularizer on Conv layer.
61

62
63
  Returns:
    Output tensor for the block.
64
65
66
67
68
69
70
71
72
  """
  filters1, filters2, filters3 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

Zongwei Zhou's avatar
Zongwei Zhou committed
73
74
75
76
77
78
79
80
81
82
83
84
85
  x = layers.Conv2D(
      filters1, (1, 1),
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2a')(
          input_tensor)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=BATCH_NORM_DECAY,
      epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2a')(
          x)
86
87
  x = layers.Activation('relu')(x)

Zongwei Zhou's avatar
Zongwei Zhou committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
  x = layers.Conv2D(
      filters2,
      kernel_size,
      padding='same',
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2b')(
          x)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=BATCH_NORM_DECAY,
      epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2b')(
          x)
103
104
  x = layers.Activation('relu')(x)

Zongwei Zhou's avatar
Zongwei Zhou committed
105
106
107
108
109
110
111
112
113
114
115
116
117
  x = layers.Conv2D(
      filters3, (1, 1),
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2c')(
          x)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=BATCH_NORM_DECAY,
      epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2c')(
          x)
118
119
120
121
122
123
124
125
126
127
128

  x = layers.add([x, input_tensor])
  x = layers.Activation('relu')(x)
  return x


def conv_block(input_tensor,
               kernel_size,
               filters,
               stage,
               block,
Zongwei Zhou's avatar
Zongwei Zhou committed
129
130
               strides=(2, 2),
               use_l2_regularizer=True):
131
132
133
134
135
  """A block that has a conv layer at shortcut.

  Note that from stage 3,
  the second conv layer at main path is with strides=(2, 2)
  And the shortcut should have strides=(2, 2) as well
136
137
138
139
140
141
142
143

  Args:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
    block: 'a','b'..., current block label, used for generating layer names
    strides: Strides for the second conv layer in the block.
Zongwei Zhou's avatar
Zongwei Zhou committed
144
    use_l2_regularizer: whether to use L2 regularizer on Conv layer.
145
146
147

  Returns:
    Output tensor for the block.
148
149
150
151
152
153
154
155
156
  """
  filters1, filters2, filters3 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

Zongwei Zhou's avatar
Zongwei Zhou committed
157
158
159
160
161
162
163
164
165
166
167
168
169
  x = layers.Conv2D(
      filters1, (1, 1),
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2a')(
          input_tensor)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=BATCH_NORM_DECAY,
      epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2a')(
          x)
170
171
  x = layers.Activation('relu')(x)

Zongwei Zhou's avatar
Zongwei Zhou committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
  x = layers.Conv2D(
      filters2,
      kernel_size,
      strides=strides,
      padding='same',
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2b')(
          x)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=BATCH_NORM_DECAY,
      epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2b')(
          x)
188
189
  x = layers.Activation('relu')(x)

Zongwei Zhou's avatar
Zongwei Zhou committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
  x = layers.Conv2D(
      filters3, (1, 1),
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '2c')(
          x)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=BATCH_NORM_DECAY,
      epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2c')(
          x)

  shortcut = layers.Conv2D(
      filters3, (1, 1),
      strides=strides,
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name=conv_name_base + '1')(
          input_tensor)
  shortcut = layers.BatchNormalization(
      axis=bn_axis,
      momentum=BATCH_NORM_DECAY,
      epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '1')(
          shortcut)
218
219
220
221
222
223

  x = layers.add([x, shortcut])
  x = layers.Activation('relu')(x)
  return x


Zongwei Zhou's avatar
Zongwei Zhou committed
224
225
226
227
def resnet50(num_classes,
             dtype='float32',
             batch_size=None,
             use_l2_regularizer=True):
228
229
230
231
  """Instantiates the ResNet50 architecture.

  Args:
    num_classes: `int` number of classes for image classification.
232
233
    dtype: dtype to use float32 or float16 are most common.
    batch_size: Size of the batches for each step.
Zongwei Zhou's avatar
Zongwei Zhou committed
234
    use_l2_regularizer: whether to use L2 regularizer on Conv/Dense layer.
235
236
237
238

  Returns:
      A Keras model instance.
  """
239
  input_shape = (224, 224, 3)
Zongwei Zhou's avatar
Zongwei Zhou committed
240
241
  img_input = layers.Input(
      shape=input_shape, dtype=dtype, batch_size=batch_size)
242

243
  if backend.image_data_format() == 'channels_first':
Zongwei Zhou's avatar
Zongwei Zhou committed
244
245
246
247
    x = layers.Lambda(
        lambda x: backend.permute_dimensions(x, (0, 3, 1, 2)),
        name='transpose')(
            img_input)
248
    bn_axis = 1
249
250
  else:  # channels_last
    x = img_input
251
252
    bn_axis = 3

253
  x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(x)
Zongwei Zhou's avatar
Zongwei Zhou committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
  x = layers.Conv2D(
      64, (7, 7),
      strides=(2, 2),
      padding='valid',
      use_bias=False,
      kernel_initializer='he_normal',
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name='conv1')(
          x)
  x = layers.BatchNormalization(
      axis=bn_axis,
      momentum=BATCH_NORM_DECAY,
      epsilon=BATCH_NORM_EPSILON,
      name='bn_conv1')(
          x)
269
  x = layers.Activation('relu')(x)
270
  x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
271

Zongwei Zhou's avatar
Zongwei Zhou committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
  x = conv_block(
      x,
      3, [64, 64, 256],
      stage=2,
      block='a',
      strides=(1, 1),
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [64, 64, 256],
      stage=2,
      block='b',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [64, 64, 256],
      stage=2,
      block='c',
      use_l2_regularizer=use_l2_regularizer)

  x = conv_block(
      x,
      3, [128, 128, 512],
      stage=3,
      block='a',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [128, 128, 512],
      stage=3,
      block='b',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [128, 128, 512],
      stage=3,
      block='c',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [128, 128, 512],
      stage=3,
      block='d',
      use_l2_regularizer=use_l2_regularizer)

  x = conv_block(
      x,
      3, [256, 256, 1024],
      stage=4,
      block='a',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [256, 256, 1024],
      stage=4,
      block='b',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [256, 256, 1024],
      stage=4,
      block='c',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [256, 256, 1024],
      stage=4,
      block='d',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [256, 256, 1024],
      stage=4,
      block='e',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [256, 256, 1024],
      stage=4,
      block='f',
      use_l2_regularizer=use_l2_regularizer)

  x = conv_block(
      x,
      3, [512, 512, 2048],
      stage=5,
      block='a',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [512, 512, 2048],
      stage=5,
      block='b',
      use_l2_regularizer=use_l2_regularizer)
  x = identity_block(
      x,
      3, [512, 512, 2048],
      stage=5,
      block='c',
      use_l2_regularizer=use_l2_regularizer)
372

373
374
  rm_axes = [1, 2] if backend.image_data_format() == 'channels_last' else [2, 3]
  x = layers.Lambda(lambda x: backend.mean(x, rm_axes), name='reduce_mean')(x)
375
  x = layers.Dense(
Reed's avatar
Reed committed
376
      num_classes,
377
      kernel_initializer=initializers.RandomNormal(stddev=0.01),
Zongwei Zhou's avatar
Zongwei Zhou committed
378
379
380
381
      kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      bias_regularizer=_gen_l2_regularizer(use_l2_regularizer),
      name='fc1000')(
          x)
382

Reed's avatar
Reed committed
383
384
385
386
  # TODO(reedwm): Remove manual casts once mixed precision can be enabled with a
  # single line of code.
  x = backend.cast(x, 'float32')
  x = layers.Activation('softmax')(x)
387
388
389

  # Create model.
  return models.Model(img_input, x, name='resnet50')