ctl_imagenet_main.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a ResNet model on the ImageNet dataset using custom training loops."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import app as absl_app
from absl import flags
from absl import logging
import tensorflow as tf

26
27
from official.resnet.ctl import ctl_common
from official.resnet.keras import imagenet_preprocessing
28
29
30
31
32
33
34
from official.resnet.keras import keras_common
from official.resnet.keras import keras_imagenet_main
from official.resnet.keras import resnet_model
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
35
from official.utils.misc import model_helpers
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52


def build_stats(train_result, eval_result, time_callback):
  """Normalizes and returns dictionary of stats.

  Args:
    train_result: The final loss at training time.
    eval_result: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
    time_callback: Time tracking callback instance.

  Returns:
    Dictionary of normalized results.
  """
  stats = {}

  if eval_result:
53
54
    stats['eval_loss'] = eval_result[0]
    stats['eval_acc'] = eval_result[1]
55
56
57
58
59
60

    stats['train_loss'] = train_result[0]
    stats['train_acc'] = train_result[1]

  if time_callback:
    timestamp_log = time_callback.timestamp_log
61
62
    stats['step_timestamp_log'] = timestamp_log
    stats['train_finish_time'] = time_callback.train_finish_time
63
    if len(timestamp_log) > 1:
64
      stats['avg_exp_per_second'] = (
65
66
67
68
69
70
71
72
73
74
75
76
          time_callback.batch_size * time_callback.log_steps *
          (len(time_callback.timestamp_log) - 1) /
          (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))

  return stats


def get_input_dataset(flags_obj, strategy):
  """Returns the test and train input datasets."""
  dtype = flags_core.get_tf_dtype(flags_obj)
  if flags_obj.use_synthetic_data:
    input_fn = keras_common.get_synth_input_fn(
77
78
79
80
        height=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
        width=imagenet_preprocessing.DEFAULT_IMAGE_SIZE,
        num_channels=imagenet_preprocessing.NUM_CHANNELS,
        num_classes=imagenet_preprocessing.NUM_CLASSES,
81
82
83
        dtype=dtype,
        drop_remainder=True)
  else:
84
    input_fn = imagenet_preprocessing.input_fn
85
86
87
88
89

  train_ds = input_fn(
      is_training=True,
      data_dir=flags_obj.data_dir,
      batch_size=flags_obj.batch_size,
90
      parse_record_fn=imagenet_preprocessing.parse_record,
91
92
93
94
95
      datasets_num_private_threads=flags_obj.datasets_num_private_threads,
      dtype=dtype)

  if strategy:
    train_ds = strategy.experimental_distribute_dataset(train_ds)
96

97
98
99
100
101
102
  test_ds = None
  if not flags_obj.skip_eval:
    test_ds = input_fn(
        is_training=False,
        data_dir=flags_obj.data_dir,
        batch_size=flags_obj.batch_size,
103
        parse_record_fn=imagenet_preprocessing.parse_record,
104
105
106
107
108
109
110
111
112
113
        dtype=dtype)

    if strategy:
      test_ds = strategy.experimental_distribute_dataset(test_ds)

  return train_ds, test_ds


def get_num_train_iterations(flags_obj):
  """Returns the number of training stesps, train and test epochs."""
114
115
  train_steps = (
      imagenet_preprocessing.NUM_IMAGES['train'] // flags_obj.batch_size)
116
117
118
119
120
121
  train_epochs = flags_obj.train_epochs

  if flags_obj.train_steps:
    train_steps = min(flags_obj.train_steps, train_steps)
    train_epochs = 1

122
123
  eval_steps = (
      imagenet_preprocessing.NUM_IMAGES['validation'] // flags_obj.batch_size)
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

  return train_steps, train_epochs, eval_steps


def run(flags_obj):
  """Run ResNet ImageNet training and eval loop using custom training loops.

  Args:
    flags_obj: An object containing parsed flag values.

  Raises:
    ValueError: If fp16 is passed as it is not currently supported.

  Returns:
    Dictionary of training and eval stats.
  """
Zongwei Zhou's avatar
Zongwei Zhou committed
140
141
142
143
  keras_utils.set_session_config(
      enable_eager=flags_obj.enable_eager,
      enable_xla=flags_obj.enable_xla)

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
  dtype = flags_core.get_tf_dtype(flags_obj)

  # TODO(anj-s): Set data_format without using Keras.
  data_format = flags_obj.data_format
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
  tf.keras.backend.set_image_data_format(data_format)

  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=flags_obj.distribution_strategy,
      num_gpus=flags_obj.num_gpus,
      num_workers=distribution_utils.configure_cluster(),
      all_reduce_alg=flags_obj.all_reduce_alg,
      num_packs=flags_obj.num_packs)

  train_ds, test_ds = get_input_dataset(flags_obj, strategy)
  train_steps, train_epochs, eval_steps = get_num_train_iterations(flags_obj)

  time_callback = keras_utils.TimeHistory(flags_obj.batch_size,
                                          flags_obj.log_steps)

  strategy_scope = distribution_utils.get_strategy_scope(strategy)
  with strategy_scope:
168
169
    model = resnet_model.resnet50(
        num_classes=imagenet_preprocessing.NUM_CLASSES,
Zongwei Zhou's avatar
Zongwei Zhou committed
170
171
        dtype=dtype, batch_size=flags_obj.batch_size,
        use_l2_regularizer=not flags_obj.single_l2_loss_op)
172
173
174
175
176
177
178
179
180
181
182

    optimizer = tf.keras.optimizers.SGD(
        learning_rate=keras_common.BASE_LEARNING_RATE, momentum=0.9,
        nesterov=True)

    training_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
        'training_accuracy', dtype=tf.float32)
    test_loss = tf.keras.metrics.Mean('test_loss', dtype=tf.float32)
    test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
        'test_accuracy', dtype=tf.float32)

Zongwei Zhou's avatar
Zongwei Zhou committed
183
184
    trainable_variables = model.trainable_variables

185
186
187
188
189
190
191
192
193
194
    def train_step(train_ds_inputs):
      """Training StepFn."""
      def step_fn(inputs):
        """Per-Replica StepFn."""
        images, labels = inputs
        with tf.GradientTape() as tape:
          logits = model(images, training=True)

          prediction_loss = tf.keras.losses.sparse_categorical_crossentropy(
              labels, logits)
Zongwei Zhou's avatar
Zongwei Zhou committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
          loss = tf.reduce_sum(prediction_loss) * (1.0/ flags_obj.batch_size)
          num_replicas = tf.distribute.get_strategy().num_replicas_in_sync

          if flags_obj.single_l2_loss_op:
            filtered_variables = [
                tf.reshape(v, (-1,))
                for v in trainable_variables
                if 'bn' not in v.name
            ]
            l2_loss = resnet_model.L2_WEIGHT_DECAY * 2 * tf.nn.l2_loss(
                tf.concat(filtered_variables, axis=0))
            loss += (l2_loss / num_replicas)
          else:
            loss += (tf.reduce_sum(model.losses) / num_replicas)
        grads = tape.gradient(loss, trainable_variables)
        optimizer.apply_gradients(zip(grads, trainable_variables))
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

        training_accuracy.update_state(labels, logits)
        return loss

      if strategy:
        per_replica_losses = strategy.experimental_run_v2(
            step_fn, args=(train_ds_inputs,))
        return strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses,
                               axis=None)
      else:
        return step_fn(train_ds_inputs)

    def test_step(test_ds_inputs):
      """Evaluation StepFn."""
      def step_fn(inputs):
        images, labels = inputs
        logits = model(images, training=False)
        loss = tf.keras.losses.sparse_categorical_crossentropy(labels,
                                                               logits)
        loss = tf.reduce_sum(loss) * (1.0/ flags_obj.batch_size)
        test_loss.update_state(loss)
        test_accuracy.update_state(labels, logits)

      if strategy:
        strategy.experimental_run_v2(step_fn, args=(test_ds_inputs,))
      else:
        step_fn(test_ds_inputs)

    if flags_obj.use_tf_function:
      train_step = tf.function(train_step)
      test_step = tf.function(test_step)

    time_callback.on_train_begin()
    for epoch in range(train_epochs):

      train_iter = iter(train_ds)
      total_loss = 0.0
      training_accuracy.reset_states()

      for step in range(train_steps):
        optimizer.lr = keras_imagenet_main.learning_rate_schedule(
            epoch, step, train_steps, flags_obj.batch_size)

        time_callback.on_batch_begin(step+epoch*train_steps)
        total_loss += train_step(next(train_iter))
        time_callback.on_batch_end(step+epoch*train_steps)

      train_loss = total_loss / train_steps
      logging.info('Training loss: %s, accuracy: %s%% at epoch: %d',
                   train_loss.numpy(),
                   training_accuracy.result().numpy(),
                   epoch)

      if (not flags_obj.skip_eval and
          (epoch + 1) % flags_obj.epochs_between_evals == 0):
        test_loss.reset_states()
        test_accuracy.reset_states()

        test_iter = iter(test_ds)
        for _ in range(eval_steps):
          test_step(next(test_iter))

        logging.info('Test loss: %s, accuracy: %s%% at epoch: %d',
                     test_loss.result().numpy(),
                     test_accuracy.result().numpy(),
                     epoch)

    time_callback.on_train_end()

    eval_result = None
    train_result = None
    if not flags_obj.skip_eval:
      eval_result = [test_loss.result().numpy(),
                     test_accuracy.result().numpy()]
      train_result = [train_loss.numpy(),
                      training_accuracy.result().numpy()]

    stats = build_stats(train_result, eval_result, time_callback)
    return stats


def main(_):
  model_helpers.apply_clean(flags.FLAGS)
  with logger.benchmark_context(flags.FLAGS):
    return run(flags.FLAGS)


if __name__ == '__main__':
  logging.set_verbosity(logging.INFO)
300
  keras_common.define_keras_flags()
301
  ctl_common.define_ctl_flags()
302
303
  flags.adopt_module_key_flags(keras_common)
  flags.adopt_module_key_flags(ctl_common)
304
  absl_app.run(main)