"git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "88f9c347b288733c87b3056b6e1a8d2717036ce6"
ops_test.py 60.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Tests for object_detection.utils.ops."""
pkulzc's avatar
pkulzc committed
17
18
19
20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import numpy as np
pkulzc's avatar
pkulzc committed
22
23
import six
from six.moves import range
24
25
import tensorflow.compat.v1 as tf
import tf_slim as slim
26
27
from object_detection.core import standard_fields as fields
from object_detection.utils import ops
28
from object_detection.utils import test_case
29
30


31
class NormalizedToImageCoordinatesTest(test_case.TestCase):
32
33
34
35

  def test_normalized_to_image_coordinates(self):
    normalized_boxes_np = np.array([[[0.0, 0.0, 1.0, 1.0]],
                                    [[0.5, 0.5, 1.0, 1.0]]])
36
37
38
39
40
41

    def graph_fn(normalized_boxes):
      image_shape = tf.convert_to_tensor([1, 4, 4, 3], dtype=tf.int32)
      absolute_boxes = ops.normalized_to_image_coordinates(
          normalized_boxes, image_shape, parallel_iterations=2)
      return absolute_boxes
42
43
44
45

    expected_boxes = np.array([[[0, 0, 4, 4]],
                               [[2, 2, 4, 4]]])

46
    absolute_boxes = self.execute(graph_fn, [normalized_boxes_np])
47
48
49
    self.assertAllEqual(absolute_boxes, expected_boxes)


50
class ReduceSumTrailingDimensions(test_case.TestCase):
51
52

  def test_reduce_sum_trailing_dimensions(self):
53
54
55
56
57
58

    def graph_fn(input_tensor):
      reduced_tensor = ops.reduce_sum_trailing_dimensions(input_tensor, ndims=2)
      return reduced_tensor

    reduced_np = self.execute(graph_fn, [np.ones((2, 2, 2), np.float32)])
59
60
61
    self.assertAllClose(reduced_np, 2 * np.ones((2, 2), np.float32))


62
class MeshgridTest(test_case.TestCase):
63
64
65

  def test_meshgrid_numpy_comparison(self):
    """Tests meshgrid op with vectors, for which it should match numpy."""
66

67
68
    x = np.arange(4)
    y = np.arange(6)
69
70
71
72
73

    def graph_fn():
      xgrid, ygrid = ops.meshgrid(x, y)
      return xgrid, ygrid

74
    exp_xgrid, exp_ygrid = np.meshgrid(x, y)
75
76
77
    xgrid_output, ygrid_output = self.execute(graph_fn, [])
    self.assertAllEqual(xgrid_output, exp_xgrid)
    self.assertAllEqual(ygrid_output, exp_ygrid)
78
79
80
81
82
83
84

  def test_meshgrid_multidimensional(self):
    np.random.seed(18)
    x = np.random.rand(4, 1, 2).astype(np.float32)
    y = np.random.rand(2, 3).astype(np.float32)

    grid_shape = list(y.shape) + list(x.shape)
85
86
87
88
89
90
91
92

    def graph_fn():
      xgrid, ygrid = ops.meshgrid(x, y)
      self.assertEqual(xgrid.get_shape().as_list(), grid_shape)
      self.assertEqual(ygrid.get_shape().as_list(), grid_shape)
      return xgrid, ygrid

    xgrid_output, ygrid_output = self.execute(graph_fn, [])
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

    # Check the shape of the output grids
    self.assertEqual(xgrid_output.shape, tuple(grid_shape))
    self.assertEqual(ygrid_output.shape, tuple(grid_shape))

    # Check a few elements
    test_elements = [((3, 0, 0), (1, 2)),
                     ((2, 0, 1), (0, 0)),
                     ((0, 0, 0), (1, 1))]
    for xind, yind in test_elements:
      # These are float equality tests, but the meshgrid op should not introduce
      # rounding.
      self.assertEqual(xgrid_output[yind + xind], x[xind])
      self.assertEqual(ygrid_output[yind + xind], y[yind])


109
class OpsTestFixedPadding(test_case.TestCase):
110
111

  def test_3x3_kernel(self):
112
113
114
115
116
117
118

    def graph_fn():
      tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
      padded_tensor = ops.fixed_padding(tensor, 3)
      return padded_tensor

    padded_tensor_out = self.execute(graph_fn, [])
119
120
121
    self.assertEqual((1, 4, 4, 1), padded_tensor_out.shape)

  def test_5x5_kernel(self):
122
123
124
125
126
127
128

    def graph_fn():
      tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
      padded_tensor = ops.fixed_padding(tensor, 5)
      return padded_tensor

    padded_tensor_out = self.execute(graph_fn, [])
129
130
131
    self.assertEqual((1, 6, 6, 1), padded_tensor_out.shape)

  def test_3x3_atrous_kernel(self):
132
133
134
135
136
137
138

    def graph_fn():
      tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
      padded_tensor = ops.fixed_padding(tensor, 3, 2)
      return padded_tensor

    padded_tensor_out = self.execute(graph_fn, [])
139
140
141
    self.assertEqual((1, 6, 6, 1), padded_tensor_out.shape)


142
class OpsTestPadToMultiple(test_case.TestCase):
143
144

  def test_zero_padding(self):
145
146
147
148
149
150
151

    def graph_fn():
      tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
      padded_tensor = ops.pad_to_multiple(tensor, 1)
      return padded_tensor

    padded_tensor_out = self.execute(graph_fn, [])
152
153
154
    self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape)

  def test_no_padding(self):
155
156
157
158
159
160
161

    def graph_fn():
      tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
      padded_tensor = ops.pad_to_multiple(tensor, 2)
      return padded_tensor

    padded_tensor_out = self.execute(graph_fn, [])
162
163
    self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape)

164
  def test_non_square_padding(self):
165
166
167
168
169
170
171

    def graph_fn():
      tensor = tf.constant([[[[0.], [0.]]]])
      padded_tensor = ops.pad_to_multiple(tensor, 2)
      return padded_tensor

    padded_tensor_out = self.execute(graph_fn, [])
172
173
    self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape)

174
  def test_padding(self):
175
176
177
178
179
180
181

    def graph_fn():
      tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
      padded_tensor = ops.pad_to_multiple(tensor, 4)
      return padded_tensor

    padded_tensor_out = self.execute(graph_fn, [])
182
183
184
    self.assertEqual((1, 4, 4, 1), padded_tensor_out.shape)


185
class OpsTestPaddedOneHotEncoding(test_case.TestCase):
186
187

  def test_correct_one_hot_tensor_with_no_pad(self):
188
189
190
191
192
193

    def graph_fn():
      indices = tf.constant([1, 2, 3, 5])
      one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=0)
      return one_hot_tensor

194
195
196
197
    expected_tensor = np.array([[0, 1, 0, 0, 0, 0],
                                [0, 0, 1, 0, 0, 0],
                                [0, 0, 0, 1, 0, 0],
                                [0, 0, 0, 0, 0, 1]], np.float32)
198
199
200
201
202

    # Executing on CPU only because output shape is not constant.
    out_one_hot_tensor = self.execute_cpu(graph_fn, [])
    self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10,
                        atol=1e-10)
203
204

  def test_correct_one_hot_tensor_with_pad_one(self):
205
206
207
208
209
210

    def graph_fn():
      indices = tf.constant([1, 2, 3, 5])
      one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=1)
      return one_hot_tensor

211
212
213
214
    expected_tensor = np.array([[0, 0, 1, 0, 0, 0, 0],
                                [0, 0, 0, 1, 0, 0, 0],
                                [0, 0, 0, 0, 1, 0, 0],
                                [0, 0, 0, 0, 0, 0, 1]], np.float32)
215
216
217
218
    # Executing on CPU only because output shape is not constant.
    out_one_hot_tensor = self.execute_cpu(graph_fn, [])
    self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10,
                        atol=1e-10)
219
220

  def test_correct_one_hot_tensor_with_pad_three(self):
221
222
223
224
225
226

    def graph_fn():
      indices = tf.constant([1, 2, 3, 5])
      one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=3)
      return one_hot_tensor

227
228
229
230
    expected_tensor = np.array([[0, 0, 0, 0, 1, 0, 0, 0, 0],
                                [0, 0, 0, 0, 0, 1, 0, 0, 0],
                                [0, 0, 0, 0, 0, 0, 1, 0, 0],
                                [0, 0, 0, 0, 0, 0, 0, 0, 1]], np.float32)
231
232
233
234
235

    # executing on CPU only because output shape is not constant.
    out_one_hot_tensor = self.execute_cpu(graph_fn, [])
    self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10,
                        atol=1e-10)
236
237

  def test_correct_padded_one_hot_tensor_with_empty_indices(self):
238

239
240
    depth = 6
    pad = 2
241
242
243
244
245
246
247

    def graph_fn():
      indices = tf.constant([])
      one_hot_tensor = ops.padded_one_hot_encoding(
          indices, depth=depth, left_pad=pad)
      return one_hot_tensor

248
    expected_tensor = np.zeros((0, depth + pad))
249
250
251
252
    # executing on CPU only because output shape is not constant.
    out_one_hot_tensor = self.execute_cpu(graph_fn, [])
    self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10,
                        atol=1e-10)
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

  def test_return_none_on_zero_depth(self):
    indices = tf.constant([1, 2, 3, 4, 5])
    one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=0, left_pad=2)
    self.assertEqual(one_hot_tensor, None)

  def test_raise_value_error_on_rank_two_input(self):
    indices = tf.constant(1.0, shape=(2, 3))
    with self.assertRaises(ValueError):
      ops.padded_one_hot_encoding(indices, depth=6, left_pad=2)

  def test_raise_value_error_on_negative_pad(self):
    indices = tf.constant(1.0, shape=(2, 3))
    with self.assertRaises(ValueError):
      ops.padded_one_hot_encoding(indices, depth=6, left_pad=-1)

  def test_raise_value_error_on_float_pad(self):
    indices = tf.constant(1.0, shape=(2, 3))
    with self.assertRaises(ValueError):
      ops.padded_one_hot_encoding(indices, depth=6, left_pad=0.1)

  def test_raise_value_error_on_float_depth(self):
    indices = tf.constant(1.0, shape=(2, 3))
    with self.assertRaises(ValueError):
      ops.padded_one_hot_encoding(indices, depth=0.1, left_pad=2)


280
class OpsDenseToSparseBoxesTest(test_case.TestCase):
281
282
283
284
285

  def test_return_all_boxes_when_all_input_boxes_are_valid(self):
    num_classes = 4
    num_valid_boxes = 3
    code_size = 4
286
287
288
289
290
291
292
293
294
295

    def graph_fn(dense_location, dense_num_boxes):
      box_locations, box_classes = ops.dense_to_sparse_boxes(
          dense_location, dense_num_boxes, num_classes)
      return box_locations, box_classes

    dense_location_np = np.random.uniform(size=[num_valid_boxes, code_size])
    dense_num_boxes_np = np.array([1, 0, 0, 2], dtype=np.int32)

    expected_box_locations = dense_location_np
296
    expected_box_classses = np.array([0, 3, 3])
297
298
299
300

    # Executing on CPU only since output shape is not constant.
    box_locations, box_classes = self.execute_cpu(
        graph_fn, [dense_location_np, dense_num_boxes_np])
301
302
303
304
305
306
307
308
309
310
311

    self.assertAllClose(box_locations, expected_box_locations, rtol=1e-6,
                        atol=1e-6)
    self.assertAllEqual(box_classes, expected_box_classses)

  def test_return_only_valid_boxes_when_input_contains_invalid_boxes(self):
    num_classes = 4
    num_valid_boxes = 3
    num_boxes = 10
    code_size = 4

312
313
314
315
316
317
318
319
320
    def graph_fn(dense_location, dense_num_boxes):
      box_locations, box_classes = ops.dense_to_sparse_boxes(
          dense_location, dense_num_boxes, num_classes)
      return box_locations, box_classes

    dense_location_np = np.random.uniform(size=[num_boxes, code_size])
    dense_num_boxes_np = np.array([1, 0, 0, 2], dtype=np.int32)

    expected_box_locations = dense_location_np[:num_valid_boxes]
321
    expected_box_classses = np.array([0, 3, 3])
322
323
324
325

    # Executing on CPU only since output shape is not constant.
    box_locations, box_classes = self.execute_cpu(
        graph_fn, [dense_location_np, dense_num_boxes_np])
326
327
328
329
330
331

    self.assertAllClose(box_locations, expected_box_locations, rtol=1e-6,
                        atol=1e-6)
    self.assertAllEqual(box_classes, expected_box_classses)


332
class OpsTestIndicesToDenseVector(test_case.TestCase):
333
334
335
336
337
338
339
340
341

  def test_indices_to_dense_vector(self):
    size = 10000
    num_indices = np.random.randint(size)
    rand_indices = np.random.permutation(np.arange(size))[0:num_indices]

    expected_output = np.zeros(size, dtype=np.float32)
    expected_output[rand_indices] = 1.

342
343
344
345
    def graph_fn():
      tf_rand_indices = tf.constant(rand_indices)
      indicator = ops.indices_to_dense_vector(tf_rand_indices, size)
      return indicator
346

347
348
349
    output = self.execute(graph_fn, [])
    self.assertAllEqual(output, expected_output)
    self.assertEqual(output.dtype, expected_output.dtype)
350
351
352
353
354
355
356
357
358
359

  def test_indices_to_dense_vector_size_at_inference(self):
    size = 5000
    num_indices = 250
    all_indices = np.arange(size)
    rand_indices = np.random.permutation(all_indices)[0:num_indices]

    expected_output = np.zeros(size, dtype=np.float32)
    expected_output[rand_indices] = 1.

360
361
362
363
364
    def graph_fn(tf_all_indices):
      tf_rand_indices = tf.constant(rand_indices)
      indicator = ops.indices_to_dense_vector(tf_rand_indices,
                                              tf.shape(tf_all_indices)[0])
      return indicator
365

366
367
368
    output = self.execute(graph_fn, [all_indices])
    self.assertAllEqual(output, expected_output)
    self.assertEqual(output.dtype, expected_output.dtype)
369
370
371
372
373
374
375
376
377

  def test_indices_to_dense_vector_int(self):
    size = 500
    num_indices = 25
    rand_indices = np.random.permutation(np.arange(size))[0:num_indices]

    expected_output = np.zeros(size, dtype=np.int64)
    expected_output[rand_indices] = 1

378
379
380
381
382
    def graph_fn():
      tf_rand_indices = tf.constant(rand_indices)
      indicator = ops.indices_to_dense_vector(
          tf_rand_indices, size, 1, dtype=tf.int64)
      return indicator
383

384
385
386
    output = self.execute(graph_fn, [])
    self.assertAllEqual(output, expected_output)
    self.assertEqual(output.dtype, expected_output.dtype)
387
388
389
390
391
392
393
394
395
396
397

  def test_indices_to_dense_vector_custom_values(self):
    size = 100
    num_indices = 10
    rand_indices = np.random.permutation(np.arange(size))[0:num_indices]
    indices_value = np.random.rand(1)
    default_value = np.random.rand(1)

    expected_output = np.float32(np.ones(size) * default_value)
    expected_output[rand_indices] = indices_value

398
399
400
401
402
403
404
405
    def graph_fn():
      tf_rand_indices = tf.constant(rand_indices)
      indicator = ops.indices_to_dense_vector(
          tf_rand_indices,
          size,
          indices_value=indices_value,
          default_value=default_value)
      return indicator
406

407
408
409
    output = self.execute(graph_fn, [])
    self.assertAllClose(output, expected_output)
    self.assertEqual(output.dtype, expected_output.dtype)
410
411
412
413
414
415
416
417

  def test_indices_to_dense_vector_all_indices_as_input(self):
    size = 500
    num_indices = 500
    rand_indices = np.random.permutation(np.arange(size))[0:num_indices]

    expected_output = np.ones(size, dtype=np.float32)

418
419
420
421
    def graph_fn():
      tf_rand_indices = tf.constant(rand_indices)
      indicator = ops.indices_to_dense_vector(tf_rand_indices, size)
      return indicator
422

423
424
425
    output = self.execute(graph_fn, [])
    self.assertAllEqual(output, expected_output)
    self.assertEqual(output.dtype, expected_output.dtype)
426
427
428
429
430
431
432

  def test_indices_to_dense_vector_empty_indices_as_input(self):
    size = 500
    rand_indices = []

    expected_output = np.zeros(size, dtype=np.float32)

433
434
435
436
    def graph_fn():
      tf_rand_indices = tf.constant(rand_indices)
      indicator = ops.indices_to_dense_vector(tf_rand_indices, size)
      return indicator
437

438
439
440
    output = self.execute(graph_fn, [])
    self.assertAllEqual(output, expected_output)
    self.assertEqual(output.dtype, expected_output.dtype)
441
442


443
class GroundtruthFilterTest(test_case.TestCase):
444
445

  def test_filter_groundtruth(self):
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

    def graph_fn(input_image, input_boxes, input_classes, input_is_crowd,
                 input_area, input_difficult, input_label_types,
                 input_confidences, valid_indices):
      input_tensors = {
          fields.InputDataFields.image: input_image,
          fields.InputDataFields.groundtruth_boxes: input_boxes,
          fields.InputDataFields.groundtruth_classes: input_classes,
          fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
          fields.InputDataFields.groundtruth_area: input_area,
          fields.InputDataFields.groundtruth_difficult: input_difficult,
          fields.InputDataFields.groundtruth_label_types: input_label_types,
          fields.InputDataFields.groundtruth_confidences: input_confidences,
      }

      output_tensors = ops.retain_groundtruth(input_tensors, valid_indices)
      return output_tensors

    input_image = np.random.rand(224, 224, 3)
    input_boxes = np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]],
                           dtype=np.float32)
    input_classes = np.array([1, 2], dtype=np.int32)
    input_is_crowd = np.array([False, True], dtype=np.bool)
    input_area = np.array([32, 48], dtype=np.float32)
    input_difficult = np.array([True, False], dtype=np.bool)
    input_label_types = np.array(['APPROPRIATE', 'INCORRECT'],
                                 dtype=np.string_)
    input_confidences = np.array([0.99, 0.5], dtype=np.float32)
    valid_indices = np.array([0], dtype=np.int32)

    # Strings are not supported on TPU.
    output_tensors = self.execute_cpu(
        graph_fn,
        [input_image, input_boxes, input_classes, input_is_crowd, input_area,
         input_difficult, input_label_types, input_confidences, valid_indices]
    )

483
    expected_tensors = {
484
        fields.InputDataFields.image: input_image,
485
486
487
488
489
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [1],
        fields.InputDataFields.groundtruth_is_crowd: [False],
        fields.InputDataFields.groundtruth_area: [32],
        fields.InputDataFields.groundtruth_difficult: [True],
pkulzc's avatar
pkulzc committed
490
        fields.InputDataFields.groundtruth_label_types: [six.b('APPROPRIATE')],
491
        fields.InputDataFields.groundtruth_confidences: [0.99],
492
    }
493
494
495
496
497
498
499
500
501
502
    for key in [fields.InputDataFields.image,
                fields.InputDataFields.groundtruth_boxes,
                fields.InputDataFields.groundtruth_area,
                fields.InputDataFields.groundtruth_confidences]:
      self.assertAllClose(expected_tensors[key], output_tensors[key])

    for key in [fields.InputDataFields.groundtruth_classes,
                fields.InputDataFields.groundtruth_is_crowd,
                fields.InputDataFields.groundtruth_label_types]:
      self.assertAllEqual(expected_tensors[key], output_tensors[key])
503
504

  def test_filter_with_missing_fields(self):
505
506
507
508
509
510

    input_boxes = np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]],
                           dtype=np.float)
    input_classes = np.array([1, 2], dtype=np.int32)
    valid_indices = np.array([0], dtype=np.int32)

511
512
513
514
515
516
517
    expected_tensors = {
        fields.InputDataFields.groundtruth_boxes:
        [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes:
        [1]
    }

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
    def graph_fn(input_boxes, input_classes, valid_indices):
      input_tensors = {
          fields.InputDataFields.groundtruth_boxes: input_boxes,
          fields.InputDataFields.groundtruth_classes: input_classes
      }
      output_tensors = ops.retain_groundtruth(input_tensors, valid_indices)
      return output_tensors

    output_tensors = self.execute(graph_fn, [input_boxes, input_classes,
                                             valid_indices])

    for key in [fields.InputDataFields.groundtruth_boxes]:
      self.assertAllClose(expected_tensors[key], output_tensors[key])
    for key in [fields.InputDataFields.groundtruth_classes]:
      self.assertAllEqual(expected_tensors[key], output_tensors[key])
533
534

  def test_filter_with_empty_fields(self):
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

    def graph_fn(input_boxes, input_classes, input_is_crowd, input_area,
                 input_difficult, input_confidences, valid_indices):
      input_tensors = {
          fields.InputDataFields.groundtruth_boxes: input_boxes,
          fields.InputDataFields.groundtruth_classes: input_classes,
          fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
          fields.InputDataFields.groundtruth_area: input_area,
          fields.InputDataFields.groundtruth_difficult: input_difficult,
          fields.InputDataFields.groundtruth_confidences: input_confidences,
      }
      output_tensors = ops.retain_groundtruth(input_tensors, valid_indices)
      return output_tensors

    input_boxes = np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]],
                           dtype=np.float)
    input_classes = np.array([1, 2], dtype=np.int32)
    input_is_crowd = np.array([False, True], dtype=np.bool)
    input_area = np.array([], dtype=np.float32)
    input_difficult = np.array([], dtype=np.float32)
    input_confidences = np.array([0.99, 0.5], dtype=np.float32)
    valid_indices = np.array([0], dtype=np.int32)

558
    expected_tensors = {
559
560
561
562
563
564
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [1],
        fields.InputDataFields.groundtruth_is_crowd: [False],
        fields.InputDataFields.groundtruth_area: [],
        fields.InputDataFields.groundtruth_difficult: [],
        fields.InputDataFields.groundtruth_confidences: [0.99],
565
    }
566
567
568
569
570
571
572
573
574
575
576
    output_tensors = self.execute(graph_fn, [
        input_boxes, input_classes, input_is_crowd, input_area,
        input_difficult, input_confidences, valid_indices])

    for key in [fields.InputDataFields.groundtruth_boxes,
                fields.InputDataFields.groundtruth_area,
                fields.InputDataFields.groundtruth_confidences]:
      self.assertAllClose(expected_tensors[key], output_tensors[key])
    for key in [fields.InputDataFields.groundtruth_classes,
                fields.InputDataFields.groundtruth_is_crowd]:
      self.assertAllEqual(expected_tensors[key], output_tensors[key])
577
578
579

  def test_filter_with_empty_groundtruth_boxes(self):

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
    def graph_fn(input_boxes, input_classes, input_is_crowd, input_area,
                 input_difficult, input_confidences, valid_indices):
      input_tensors = {
          fields.InputDataFields.groundtruth_boxes: input_boxes,
          fields.InputDataFields.groundtruth_classes: input_classes,
          fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
          fields.InputDataFields.groundtruth_area: input_area,
          fields.InputDataFields.groundtruth_difficult: input_difficult,
          fields.InputDataFields.groundtruth_confidences: input_confidences,
      }
      output_tensors = ops.retain_groundtruth(input_tensors, valid_indices)
      return output_tensors

    input_boxes = np.array([], dtype=np.float).reshape(0, 4)
    input_classes = np.array([], dtype=np.int32)
    input_is_crowd = np.array([], dtype=np.bool)
    input_area = np.array([], dtype=np.float32)
    input_difficult = np.array([], dtype=np.float32)
    input_confidences = np.array([], dtype=np.float32)
    valid_indices = np.array([], dtype=np.int32)

    output_tensors = self.execute(graph_fn, [input_boxes, input_classes,
                                             input_is_crowd, input_area,
                                             input_difficult,
                                             input_confidences,
                                             valid_indices])
    for key in output_tensors:
      if key == fields.InputDataFields.groundtruth_boxes:
        self.assertAllEqual([0, 4], output_tensors[key].shape)
      else:
        self.assertAllEqual([0], output_tensors[key].shape)


class RetainGroundTruthWithPositiveClasses(test_case.TestCase):
614
615

  def test_filter_groundtruth_with_positive_classes(self):
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

    def graph_fn(input_image, input_boxes, input_classes, input_is_crowd,
                 input_area, input_difficult, input_label_types,
                 input_confidences):
      input_tensors = {
          fields.InputDataFields.image: input_image,
          fields.InputDataFields.groundtruth_boxes: input_boxes,
          fields.InputDataFields.groundtruth_classes: input_classes,
          fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
          fields.InputDataFields.groundtruth_area: input_area,
          fields.InputDataFields.groundtruth_difficult: input_difficult,
          fields.InputDataFields.groundtruth_label_types: input_label_types,
          fields.InputDataFields.groundtruth_confidences: input_confidences,
      }
      output_tensors = ops.retain_groundtruth_with_positive_classes(
          input_tensors)
      return output_tensors

    input_image = np.random.rand(224, 224, 3)
    input_boxes = np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]],
                           dtype=np.float)
    input_classes = np.array([1, 0], dtype=np.int32)
    input_is_crowd = np.array([False, True], dtype=np.bool)
    input_area = np.array([32, 48], dtype=np.float32)
    input_difficult = np.array([True, False], dtype=np.bool)
    input_label_types = np.array(['APPROPRIATE', 'INCORRECT'],
                                 dtype=np.string_)
    input_confidences = np.array([0.99, 0.5], dtype=np.float32)

645
    expected_tensors = {
646
        fields.InputDataFields.image: input_image,
647
648
649
650
651
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [1],
        fields.InputDataFields.groundtruth_is_crowd: [False],
        fields.InputDataFields.groundtruth_area: [32],
        fields.InputDataFields.groundtruth_difficult: [True],
pkulzc's avatar
pkulzc committed
652
        fields.InputDataFields.groundtruth_label_types: [six.b('APPROPRIATE')],
653
        fields.InputDataFields.groundtruth_confidences: [0.99],
654
655
    }

656
657
658
659
660
661
662
    # Executing on CPU because string types are not supported on TPU.
    output_tensors = self.execute_cpu(graph_fn,
                                      [input_image, input_boxes,
                                       input_classes, input_is_crowd,
                                       input_area,
                                       input_difficult, input_label_types,
                                       input_confidences])
663

664
665
666
667
668
669
670
671
672
673
674
675
    for key in [fields.InputDataFields.image,
                fields.InputDataFields.groundtruth_boxes,
                fields.InputDataFields.groundtruth_area,
                fields.InputDataFields.groundtruth_confidences]:
      self.assertAllClose(expected_tensors[key], output_tensors[key])
    for key in [fields.InputDataFields.groundtruth_classes,
                fields.InputDataFields.groundtruth_is_crowd,
                fields.InputDataFields.groundtruth_label_types]:
      self.assertAllEqual(expected_tensors[key], output_tensors[key])


class ReplaceNaNGroundtruthLabelScoresWithOnes(test_case.TestCase):
676
677

  def test_replace_nan_groundtruth_label_scores_with_ones(self):
678
679
680
681
682
683
684

    def graph_fn():
      label_scores = tf.constant([np.nan, 1.0, np.nan])
      output_tensor = ops.replace_nan_groundtruth_label_scores_with_ones(
          label_scores)
      return output_tensor

685
    expected_tensor = [1.0, 1.0, 1.0]
686
687
    output_tensor = self.execute(graph_fn, [])
    self.assertAllClose(expected_tensor, output_tensor)
688
689

  def test_input_equals_output_when_no_nans(self):
690

691
    input_label_scores = [0.5, 1.0, 1.0]
692
693
694
695
696
697
698
699
700
    def graph_fn():
      label_scores_tensor = tf.constant(input_label_scores)
      output_label_scores = ops.replace_nan_groundtruth_label_scores_with_ones(
          label_scores_tensor)
      return output_label_scores

    output_label_scores = self.execute(graph_fn, [])

    self.assertAllClose(input_label_scores, output_label_scores)
701
702


703
class GroundtruthFilterWithCrowdBoxesTest(test_case.TestCase):
704
705

  def test_filter_groundtruth_with_crowd_boxes(self):
706
707
708
709
710
711
712
713
714
715
716
717
718

    def graph_fn():
      input_tensors = {
          fields.InputDataFields.groundtruth_boxes:
          [[0.1, 0.2, 0.6, 0.8], [0.2, 0.4, 0.1, 0.8]],
          fields.InputDataFields.groundtruth_classes: [1, 2],
          fields.InputDataFields.groundtruth_is_crowd: [True, False],
          fields.InputDataFields.groundtruth_area: [100.0, 238.7],
          fields.InputDataFields.groundtruth_confidences: [0.5, 0.99],
      }
      output_tensors = ops.filter_groundtruth_with_crowd_boxes(
          input_tensors)
      return output_tensors
719
720

    expected_tensors = {
721
722
723
724
725
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [2],
        fields.InputDataFields.groundtruth_is_crowd: [False],
        fields.InputDataFields.groundtruth_area: [238.7],
        fields.InputDataFields.groundtruth_confidences: [0.99],
726
727
    }

728
729
730
731
732
733
734
735
    output_tensors = self.execute(graph_fn, [])
    for key in [fields.InputDataFields.groundtruth_boxes,
                fields.InputDataFields.groundtruth_area,
                fields.InputDataFields.groundtruth_confidences]:
      self.assertAllClose(expected_tensors[key], output_tensors[key])
    for key in [fields.InputDataFields.groundtruth_classes,
                fields.InputDataFields.groundtruth_is_crowd]:
      self.assertAllEqual(expected_tensors[key], output_tensors[key])
736
737


738
class GroundtruthFilterWithNanBoxTest(test_case.TestCase):
739
740

  def test_filter_groundtruth_with_nan_box_coordinates(self):
741
742
743
744
745
746
747
748
749
750
751
752
753

    def graph_fn():
      input_tensors = {
          fields.InputDataFields.groundtruth_boxes:
          [[np.nan, np.nan, np.nan, np.nan], [0.2, 0.4, 0.1, 0.8]],
          fields.InputDataFields.groundtruth_classes: [1, 2],
          fields.InputDataFields.groundtruth_is_crowd: [False, True],
          fields.InputDataFields.groundtruth_area: [100.0, 238.7],
          fields.InputDataFields.groundtruth_confidences: [0.5, 0.99],
      }
      output_tensors = ops.filter_groundtruth_with_nan_box_coordinates(
          input_tensors)
      return output_tensors
754
755

    expected_tensors = {
756
757
758
759
760
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [2],
        fields.InputDataFields.groundtruth_is_crowd: [True],
        fields.InputDataFields.groundtruth_area: [238.7],
        fields.InputDataFields.groundtruth_confidences: [0.99],
761
762
    }

763
764
765
766
767
768
769
770
    output_tensors = self.execute(graph_fn, [])
    for key in [fields.InputDataFields.groundtruth_boxes,
                fields.InputDataFields.groundtruth_area,
                fields.InputDataFields.groundtruth_confidences]:
      self.assertAllClose(expected_tensors[key], output_tensors[key])
    for key in [fields.InputDataFields.groundtruth_classes,
                fields.InputDataFields.groundtruth_is_crowd]:
      self.assertAllEqual(expected_tensors[key], output_tensors[key])
771
772


773
class GroundtruthFilterWithUnrecognizedClassesTest(test_case.TestCase):
774
775

  def test_filter_unrecognized_classes(self):
776
777
778
779
780
781
782
783
784
785
786
    def graph_fn():
      input_tensors = {
          fields.InputDataFields.groundtruth_boxes:
          [[.3, .3, .5, .7], [0.2, 0.4, 0.1, 0.8]],
          fields.InputDataFields.groundtruth_classes: [-1, 2],
          fields.InputDataFields.groundtruth_is_crowd: [False, True],
          fields.InputDataFields.groundtruth_area: [100.0, 238.7],
          fields.InputDataFields.groundtruth_confidences: [0.5, 0.99],
      }
      output_tensors = ops.filter_unrecognized_classes(input_tensors)
      return output_tensors
787
788
789
790
791
792
793
794
795

    expected_tensors = {
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [2],
        fields.InputDataFields.groundtruth_is_crowd: [True],
        fields.InputDataFields.groundtruth_area: [238.7],
        fields.InputDataFields.groundtruth_confidences: [0.99],
    }

796
797
798
799
800
801
802
803
    output_tensors = self.execute(graph_fn, [])
    for key in [fields.InputDataFields.groundtruth_boxes,
                fields.InputDataFields.groundtruth_area,
                fields.InputDataFields.groundtruth_confidences]:
      self.assertAllClose(expected_tensors[key], output_tensors[key])
    for key in [fields.InputDataFields.groundtruth_classes,
                fields.InputDataFields.groundtruth_is_crowd]:
      self.assertAllEqual(expected_tensors[key], output_tensors[key])
804
805


806
class OpsTestNormalizeToTarget(test_case.TestCase):
807
808

  def test_create_normalize_to_target(self):
809
810
811
812

    if self.is_tf2():
      self.skipTest('Skipping as variable names not supported in eager mode.')

813
814
815
816
817
818
    inputs = tf.random_uniform([5, 10, 12, 3])
    target_norm_value = 4.0
    dim = 3
    with self.test_session():
      output = ops.normalize_to_target(inputs, target_norm_value, dim)
      self.assertEqual(output.op.name, 'NormalizeToTarget/mul')
819
      var_name = slim.get_variables()[0].name
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
      self.assertEqual(var_name, 'NormalizeToTarget/weights:0')

  def test_invalid_dim(self):
    inputs = tf.random_uniform([5, 10, 12, 3])
    target_norm_value = 4.0
    dim = 10
    with self.assertRaisesRegexp(
        ValueError,
        'dim must be non-negative but smaller than the input rank.'):
      ops.normalize_to_target(inputs, target_norm_value, dim)

  def test_invalid_target_norm_values(self):
    inputs = tf.random_uniform([5, 10, 12, 3])
    target_norm_value = [4.0, 4.0]
    dim = 3
    with self.assertRaisesRegexp(
        ValueError, 'target_norm_value must be a float or a list of floats'):
      ops.normalize_to_target(inputs, target_norm_value, dim)

  def test_correct_output_shape(self):
840
841
842
843
844
845
846
847
848

    if self.is_tf2():
      self.skipTest('normalize_to_target not supported in eager mode because,'
                    ' it requires creating variables.')

    inputs = np.random.uniform(size=(5, 10, 12, 3)).astype(np.float32)
    def graph_fn(inputs):
      target_norm_value = 4.0
      dim = 3
849
      output = ops.normalize_to_target(inputs, target_norm_value, dim)
850
851
852
853
854
855
      return output

    # Executing on CPU since creating a variable inside a conditional is not
    # supported.
    outputs = self.execute_cpu(graph_fn, [inputs])
    self.assertEqual(outputs.shape, inputs.shape)
856
857

  def test_correct_initial_output_values(self):
858
859
860
861
862
863
864
865
866
867
868
869
870

    if self.is_tf2():
      self.skipTest('normalize_to_target not supported in eager mode because,'
                    ' it requires creating variables.')
    def graph_fn():
      inputs = tf.constant([[[[3, 4], [7, 24]],
                             [[5, -12], [-1, 0]]]], tf.float32)
      target_norm_value = 10.0
      dim = 3
      normalized_inputs = ops.normalize_to_target(inputs, target_norm_value,
                                                  dim)
      return normalized_inputs

871
872
    expected_output = [[[[30/5.0, 40/5.0], [70/25.0, 240/25.0]],
                        [[50/13.0, -120/13.0], [-10, 0]]]]
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
    # Executing on CPU since creating a variable inside a conditional is not
    # supported.
    output = self.execute_cpu(graph_fn, [])
    self.assertAllClose(output, expected_output)

  def test_multiple_target_norm_values(self):

    if self.is_tf2():
      self.skipTest('normalize_to_target not supported in eager mode because,'
                    ' it requires creating variables.')

    def graph_fn():
      inputs = tf.constant([[[[3, 4], [7, 24]],
                             [[5, -12], [-1, 0]]]], tf.float32)
      target_norm_value = [10.0, 20.0]
      dim = 3
889
890
      normalized_inputs = ops.normalize_to_target(inputs, target_norm_value,
                                                  dim)
891
      return normalized_inputs
892
893
894

    expected_output = [[[[30/5.0, 80/5.0], [70/25.0, 480/25.0]],
                        [[50/13.0, -240/13.0], [-10, 0]]]]
895
896
897
898
899

    # Executing on CPU since creating a variable inside a conditional is not
    # supported.
    output = self.execute_cpu(graph_fn, [])
    self.assertAllClose(output, expected_output)
900
901


902
class OpsTestPositionSensitiveCropRegions(test_case.TestCase):
903
904
905

  def test_position_sensitive(self):
    num_spatial_bins = [3, 2]
906
    image_shape = [3, 2, 6]
907
908
909
910
911
912
913
914

    # The result for both boxes should be [[1, 2], [3, 4], [5, 6]]
    # before averaging.
    expected_output = np.array([3.5, 3.5]).reshape([2, 1, 1, 1])

    for crop_size_mult in range(1, 3):
      crop_size = [3 * crop_size_mult, 2 * crop_size_mult]

915
916
917
918
919
920
921
922
923
924
925
926
927
      def graph_fn():
        # First channel is 1's, second channel is 2's, etc.
        image = tf.constant(
            list(range(1, 3 * 2 + 1)) * 6, dtype=tf.float32, shape=image_shape)
        boxes = tf.random_uniform((2, 4))

        # pylint:disable=cell-var-from-loop
        ps_crop_and_pool = ops.position_sensitive_crop_regions(
            image, boxes, crop_size, num_spatial_bins, global_pool=True)
        return ps_crop_and_pool

      output = self.execute(graph_fn, [])
      self.assertAllClose(output, expected_output)
928
929
930

  def test_position_sensitive_with_equal_channels(self):
    num_spatial_bins = [2, 2]
931
    image_shape = [3, 3, 4]
932
933
    crop_size = [2, 2]

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
    def graph_fn():
      image = tf.constant(
          list(range(1, 3 * 3 + 1)), dtype=tf.float32, shape=[3, 3, 1])
      tiled_image = tf.tile(image, [1, 1, image_shape[2]])
      boxes = tf.random_uniform((3, 4))
      box_ind = tf.constant([0, 0, 0], dtype=tf.int32)

      # All channels are equal so position-sensitive crop and resize should
      # work as the usual crop and resize for just one channel.
      crop = tf.image.crop_and_resize(tf.expand_dims(image, axis=0), boxes,
                                      box_ind, crop_size)
      crop_and_pool = tf.reduce_mean(crop, [1, 2], keepdims=True)

      ps_crop_and_pool = ops.position_sensitive_crop_regions(
          tiled_image,
          boxes,
          crop_size,
          num_spatial_bins,
          global_pool=True)

      return crop_and_pool, ps_crop_and_pool

    # Crop and resize op is not supported in TPUs.
    expected_output, output = self.execute_cpu(graph_fn, [])
    self.assertAllClose(output, expected_output)
959
960
961

  def test_raise_value_error_on_num_bins_less_than_one(self):
    num_spatial_bins = [1, -1]
962
    image_shape = [1, 1, 2]
963
964
965
966
967
968
969
    crop_size = [2, 2]

    image = tf.constant(1, dtype=tf.float32, shape=image_shape)
    boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)

    with self.assertRaisesRegexp(ValueError, 'num_spatial_bins should be >= 1'):
      ops.position_sensitive_crop_regions(
970
          image, boxes, crop_size, num_spatial_bins, global_pool=True)
971
972
973

  def test_raise_value_error_on_non_divisible_crop_size(self):
    num_spatial_bins = [2, 3]
974
    image_shape = [1, 1, 6]
975
976
977
978
979
980
981
982
    crop_size = [3, 2]

    image = tf.constant(1, dtype=tf.float32, shape=image_shape)
    boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)

    with self.assertRaisesRegexp(
        ValueError, 'crop_size should be divisible by num_spatial_bins'):
      ops.position_sensitive_crop_regions(
983
          image, boxes, crop_size, num_spatial_bins, global_pool=True)
984
985
986

  def test_raise_value_error_on_non_divisible_num_channels(self):
    num_spatial_bins = [2, 2]
987
    image_shape = [1, 1, 5]
988
989
    crop_size = [2, 2]

990
991
992
993
994
995
    def graph_fn():
      image = tf.constant(1, dtype=tf.float32, shape=image_shape)
      boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)

      return ops.position_sensitive_crop_regions(
          image, boxes, crop_size, num_spatial_bins, global_pool=True)
996
997
998

    with self.assertRaisesRegexp(
        ValueError, 'Dimension size must be evenly divisible by 4 but is 5'):
999
      self.execute(graph_fn, [])
1000
1001
1002

  def test_position_sensitive_with_global_pool_false(self):
    num_spatial_bins = [3, 2]
1003
    image_shape = [3, 2, 6]
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
    num_boxes = 2

    expected_output = []

    # Expected output, when crop_size = [3, 2].
    expected_output.append(np.expand_dims(
        np.tile(np.array([[1, 2],
                          [3, 4],
                          [5, 6]]), (num_boxes, 1, 1)),
        axis=-1))

    # Expected output, when crop_size = [6, 4].
    expected_output.append(np.expand_dims(
        np.tile(np.array([[1, 1, 2, 2],
                          [1, 1, 2, 2],
                          [3, 3, 4, 4],
                          [3, 3, 4, 4],
                          [5, 5, 6, 6],
                          [5, 5, 6, 6]]), (num_boxes, 1, 1)),
        axis=-1))

    for crop_size_mult in range(1, 3):
      crop_size = [3 * crop_size_mult, 2 * crop_size_mult]
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
      # First channel is 1's, second channel is 2's, etc.

      def graph_fn():
        # pylint:disable=cell-var-from-loop
        image = tf.constant(
            list(range(1, 3 * 2 + 1)) * 6, dtype=tf.float32, shape=image_shape)
        boxes = tf.random_uniform((num_boxes, 4))

        ps_crop = ops.position_sensitive_crop_regions(
            image, boxes, crop_size, num_spatial_bins, global_pool=False)
        return ps_crop

      output = self.execute(graph_fn, [])
1040
      self.assertAllClose(output, expected_output[crop_size_mult - 1])
1041
1042
1043

  def test_position_sensitive_with_global_pool_false_and_do_global_pool(self):
    num_spatial_bins = [3, 2]
1044
    image_shape = [3, 2, 6]
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
    num_boxes = 2

    expected_output = []

    # Expected output, when crop_size = [3, 2].
    expected_output.append(np.mean(
        np.expand_dims(
            np.tile(np.array([[1, 2],
                              [3, 4],
                              [5, 6]]), (num_boxes, 1, 1)),
            axis=-1),
        axis=(1, 2), keepdims=True))

    # Expected output, when crop_size = [6, 4].
    expected_output.append(np.mean(
        np.expand_dims(
            np.tile(np.array([[1, 1, 2, 2],
                              [1, 1, 2, 2],
                              [3, 3, 4, 4],
                              [3, 3, 4, 4],
                              [5, 5, 6, 6],
                              [5, 5, 6, 6]]), (num_boxes, 1, 1)),
            axis=-1),
        axis=(1, 2), keepdims=True))

    for crop_size_mult in range(1, 3):
      crop_size = [3 * crop_size_mult, 2 * crop_size_mult]

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
      def graph_fn():
        # pylint:disable=cell-var-from-loop
        # First channel is 1's, second channel is 2's, etc.
        image = tf.constant(
            list(range(1, 3 * 2 + 1)) * 6, dtype=tf.float32, shape=image_shape)
        boxes = tf.random_uniform((num_boxes, 4))

        # Perform global_pooling after running the function with
        # global_pool=False.
        ps_crop = ops.position_sensitive_crop_regions(
            image, boxes, crop_size, num_spatial_bins, global_pool=False)
        ps_crop_and_pool = tf.reduce_mean(
            ps_crop, reduction_indices=(1, 2), keepdims=True)
        return ps_crop_and_pool

      output = self.execute(graph_fn, [])
1089
1090
1091
1092
      self.assertAllEqual(output, expected_output[crop_size_mult - 1])

  def test_raise_value_error_on_non_square_block_size(self):
    num_spatial_bins = [3, 2]
1093
    image_shape = [3, 2, 6]
1094
1095
1096
1097
1098
1099
1100
1101
    crop_size = [6, 2]

    image = tf.constant(1, dtype=tf.float32, shape=image_shape)
    boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)

    with self.assertRaisesRegexp(
        ValueError, 'Only support square bin crop size for now.'):
      ops.position_sensitive_crop_regions(
1102
1103
1104
          image, boxes, crop_size, num_spatial_bins, global_pool=False)


1105
class OpsTestBatchPositionSensitiveCropRegions(test_case.TestCase):
1106
1107
1108
1109
1110
1111

  def test_position_sensitive_with_single_bin(self):
    num_spatial_bins = [1, 1]
    image_shape = [2, 3, 3, 4]
    crop_size = [2, 2]

1112
1113
1114
1115
    def graph_fn():
      image = tf.random_uniform(image_shape)
      boxes = tf.random_uniform((2, 3, 4))
      box_ind = tf.constant([0, 0, 0, 1, 1, 1], dtype=tf.int32)
1116

1117
1118
1119
1120
1121
1122
1123
      # When a single bin is used, position-sensitive crop and pool should be
      # the same as non-position sensitive crop and pool.
      crop = tf.image.crop_and_resize(image,
                                      tf.reshape(boxes, [-1, 4]), box_ind,
                                      crop_size)
      crop_and_pool = tf.reduce_mean(crop, [1, 2], keepdims=True)
      crop_and_pool = tf.reshape(crop_and_pool, [2, 3, 1, 1, 4])
1124

1125
1126
1127
      ps_crop_and_pool = ops.batch_position_sensitive_crop_regions(
          image, boxes, crop_size, num_spatial_bins, global_pool=True)
      return crop_and_pool, ps_crop_and_pool
1128

1129
1130
1131
    # Crop and resize is not supported on TPUs.
    expected_output, output = self.execute_cpu(graph_fn, [])
    self.assertAllClose(output, expected_output)
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156

  def test_position_sensitive_with_global_pool_false_and_known_boxes(self):
    num_spatial_bins = [2, 2]
    image_shape = [2, 2, 2, 4]
    crop_size = [2, 2]

    # box_ind = tf.constant([0, 1], dtype=tf.int32)

    expected_output = []

    # Expected output, when the box containing whole image.
    expected_output.append(
        np.reshape(np.array([[4, 7],
                             [10, 13]]),
                   (1, 2, 2, 1))
    )

    # Expected output, when the box containing only first row.
    expected_output.append(
        np.reshape(np.array([[3, 6],
                             [7, 10]]),
                   (1, 2, 2, 1))
    )
    expected_output = np.stack(expected_output, axis=0)

1157
1158
1159
1160
    def graph_fn():
      images = tf.constant(
          list(range(1, 2 * 2 * 4 + 1)) * 2, dtype=tf.float32,
          shape=image_shape)
1161

1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
      # First box contains whole image, and second box contains only first row.
      boxes = tf.constant(np.array([[[0., 0., 1., 1.]],
                                    [[0., 0., 0.5, 1.]]]), dtype=tf.float32)

      ps_crop = ops.batch_position_sensitive_crop_regions(
          images, boxes, crop_size, num_spatial_bins, global_pool=False)
      return ps_crop

    output = self.execute(graph_fn, [])
    self.assertAllEqual(output, expected_output)
1172
1173
1174
1175
1176
1177

  def test_position_sensitive_with_global_pool_false_and_single_bin(self):
    num_spatial_bins = [1, 1]
    image_shape = [2, 3, 3, 4]
    crop_size = [1, 1]

1178
1179
1180
1181
    def graph_fn():
      images = tf.random_uniform(image_shape)
      boxes = tf.random_uniform((2, 3, 4))
      # box_ind = tf.constant([0, 0, 0, 1, 1, 1], dtype=tf.int32)
1182

1183
1184
1185
1186
1187
1188
1189
      # Since single_bin is used and crop_size = [1, 1] (i.e., no crop resize),
      # the outputs are the same whatever the global_pool value is.
      ps_crop_and_pool = ops.batch_position_sensitive_crop_regions(
          images, boxes, crop_size, num_spatial_bins, global_pool=True)
      ps_crop = ops.batch_position_sensitive_crop_regions(
          images, boxes, crop_size, num_spatial_bins, global_pool=False)
      return ps_crop_and_pool, ps_crop
1190

1191
1192
    pooled_output, unpooled_output = self.execute(graph_fn, [])
    self.assertAllClose(pooled_output, unpooled_output)
1193
1194


1195
1196
1197
# The following tests are only executed on CPU because the output
# shape is not constant.
class ReframeBoxMasksToImageMasksTest(test_case.TestCase):
1198
1199
1200
1201
1202
1203

  def testZeroImageOnEmptyMask(self):
    np_expected_image_masks = np.array([[[0, 0, 0, 0],
                                         [0, 0, 0, 0],
                                         [0, 0, 0, 0],
                                         [0, 0, 0, 0]]], dtype=np.float32)
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
    def graph_fn():
      box_masks = tf.constant([[[0, 0],
                                [0, 0]]], dtype=tf.float32)
      boxes = tf.constant([[0.0, 0.0, 1.0, 1.0]], dtype=tf.float32)
      image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
                                                         image_height=4,
                                                         image_width=4)
      return image_masks

    np_image_masks = self.execute_cpu(graph_fn, [])
    self.assertAllClose(np_image_masks, np_expected_image_masks)
1215

1216
  def testZeroBoxMasks(self):
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240

    def graph_fn():
      box_masks = tf.zeros([0, 3, 3], dtype=tf.float32)
      boxes = tf.zeros([0, 4], dtype=tf.float32)
      image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
                                                         image_height=4,
                                                         image_width=4)
      return image_masks

    np_image_masks = self.execute_cpu(graph_fn, [])
    self.assertAllEqual(np_image_masks.shape, np.array([0, 4, 4]))

  def testBoxWithZeroArea(self):

    def graph_fn():
      box_masks = tf.zeros([1, 3, 3], dtype=tf.float32)
      boxes = tf.constant([[0.1, 0.2, 0.1, 0.7]], dtype=tf.float32)
      image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
                                                         image_height=4,
                                                         image_width=4)
      return image_masks

    np_image_masks = self.execute_cpu(graph_fn, [])
    self.assertAllEqual(np_image_masks.shape, np.array([1, 4, 4]))
1241

1242
  def testMaskIsCenteredInImageWhenBoxIsCentered(self):
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252

    def graph_fn():
      box_masks = tf.constant([[[1, 1],
                                [1, 1]]], dtype=tf.float32)
      boxes = tf.constant([[0.25, 0.25, 0.75, 0.75]], dtype=tf.float32)
      image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
                                                         image_height=4,
                                                         image_width=4)
      return image_masks

1253
1254
1255
1256
    np_expected_image_masks = np.array([[[0, 0, 0, 0],
                                         [0, 1, 1, 0],
                                         [0, 1, 1, 0],
                                         [0, 0, 0, 0]]], dtype=np.float32)
1257
1258
    np_image_masks = self.execute_cpu(graph_fn, [])
    self.assertAllClose(np_image_masks, np_expected_image_masks)
1259
1260

  def testMaskOffCenterRemainsOffCenterInImage(self):
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270

    def graph_fn():
      box_masks = tf.constant([[[1, 0],
                                [0, 1]]], dtype=tf.float32)
      boxes = tf.constant([[0.25, 0.5, 0.75, 1.0]], dtype=tf.float32)
      image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
                                                         image_height=4,
                                                         image_width=4)
      return image_masks

1271
1272
1273
1274
    np_expected_image_masks = np.array([[[0, 0, 0, 0],
                                         [0, 0, 0.6111111, 0.16666669],
                                         [0, 0, 0.3888889, 0.83333337],
                                         [0, 0, 0, 0]]], dtype=np.float32)
1275
1276
    np_image_masks = self.execute_cpu(graph_fn, [])
    self.assertAllClose(np_image_masks, np_expected_image_masks)
1277
1278


1279
class MergeBoxesWithMultipleLabelsTest(test_case.TestCase):
1280
1281

  def testMergeBoxesWithMultipleLabels(self):
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297

    def graph_fn():
      boxes = tf.constant(
          [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75],
           [0.25, 0.25, 0.75, 0.75]],
          dtype=tf.float32)
      class_indices = tf.constant([0, 4, 2], dtype=tf.int32)
      class_confidences = tf.constant([0.8, 0.2, 0.1], dtype=tf.float32)
      num_classes = 5
      merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
          ops.merge_boxes_with_multiple_labels(
              boxes, class_indices, class_confidences, num_classes))

      return (merged_boxes, merged_classes, merged_confidences,
              merged_box_indices)

1298
1299
1300
1301
    expected_merged_boxes = np.array(
        [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype=np.float32)
    expected_merged_classes = np.array(
        [[1, 0, 1, 0, 0], [0, 0, 0, 0, 1]], dtype=np.int32)
1302
1303
    expected_merged_confidences = np.array(
        [[0.8, 0, 0.1, 0, 0], [0, 0, 0, 0, 0.2]], dtype=np.float32)
1304
    expected_merged_box_indices = np.array([0, 1], dtype=np.int32)
1305
1306
1307
1308
1309
1310
1311
1312

    # Running on CPU only as tf.unique is not supported on TPU.
    (np_merged_boxes, np_merged_classes, np_merged_confidences,
     np_merged_box_indices) = self.execute_cpu(graph_fn, [])
    self.assertAllClose(np_merged_boxes, expected_merged_boxes)
    self.assertAllClose(np_merged_classes, expected_merged_classes)
    self.assertAllClose(np_merged_confidences, expected_merged_confidences)
    self.assertAllClose(np_merged_box_indices, expected_merged_box_indices)
1313
1314

  def testMergeBoxesWithMultipleLabelsCornerCase(self):
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330

    def graph_fn():
      boxes = tf.constant(
          [[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1],
           [1, 1, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [0, 0, 1, 1]],
          dtype=tf.float32)
      class_indices = tf.constant([0, 1, 2, 3, 2, 1, 0, 3], dtype=tf.int32)
      class_confidences = tf.constant([0.1, 0.9, 0.2, 0.8, 0.3, 0.7, 0.4, 0.6],
                                      dtype=tf.float32)
      num_classes = 4
      merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
          ops.merge_boxes_with_multiple_labels(
              boxes, class_indices, class_confidences, num_classes))
      return (merged_boxes, merged_classes, merged_confidences,
              merged_box_indices)

1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
    expected_merged_boxes = np.array(
        [[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]],
        dtype=np.float32)
    expected_merged_classes = np.array(
        [[1, 0, 0, 1], [1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]],
        dtype=np.int32)
    expected_merged_confidences = np.array(
        [[0.1, 0, 0, 0.6], [0.4, 0.9, 0, 0],
         [0, 0.7, 0.2, 0], [0, 0, 0.3, 0.8]], dtype=np.float32)
    expected_merged_box_indices = np.array([0, 1, 2, 3], dtype=np.int32)
1341
1342
1343
1344
1345
1346
1347
1348
1349

    # Running on CPU only as tf.unique is not supported on TPU.
    (np_merged_boxes, np_merged_classes, np_merged_confidences,
     np_merged_box_indices) = self.execute_cpu(graph_fn, [])

    self.assertAllClose(np_merged_boxes, expected_merged_boxes)
    self.assertAllClose(np_merged_classes, expected_merged_classes)
    self.assertAllClose(np_merged_confidences, expected_merged_confidences)
    self.assertAllClose(np_merged_box_indices, expected_merged_box_indices)
1350
1351

  def testMergeBoxesWithEmptyInputs(self):
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370

    def graph_fn():
      boxes = tf.zeros([0, 4], dtype=tf.float32)
      class_indices = tf.constant([], dtype=tf.int32)
      class_confidences = tf.constant([], dtype=tf.float32)
      num_classes = 5
      merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
          ops.merge_boxes_with_multiple_labels(
              boxes, class_indices, class_confidences, num_classes))
      return (merged_boxes, merged_classes, merged_confidences,
              merged_box_indices)

    # Running on CPU only as tf.unique is not supported on TPU.
    (np_merged_boxes, np_merged_classes, np_merged_confidences,
     np_merged_box_indices) = self.execute_cpu(graph_fn, [])
    self.assertAllEqual(np_merged_boxes.shape, [0, 4])
    self.assertAllEqual(np_merged_classes.shape, [0, 5])
    self.assertAllEqual(np_merged_confidences.shape, [0, 5])
    self.assertAllEqual(np_merged_box_indices.shape, [0])
1371

1372
  def testMergeBoxesWithMultipleLabelsUsesInt64(self):
1373
1374
1375
1376

    if self.is_tf2():
      self.skipTest('Getting op names is not supported in eager mode.')

1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
    boxes = tf.constant(
        [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75],
         [0.25, 0.25, 0.75, 0.75]],
        dtype=tf.float32)
    class_indices = tf.constant([0, 4, 2], dtype=tf.int32)
    class_confidences = tf.constant([0.8, 0.2, 0.1], dtype=tf.float32)
    num_classes = 5
    ops.merge_boxes_with_multiple_labels(
        boxes, class_indices, class_confidences, num_classes)

    graph = tf.get_default_graph()

    def assert_dtype_is_int64(op_name):
      op = graph.get_operation_by_name(op_name)
      self.assertEqual(op.get_attr('dtype'), tf.int64)

    def assert_t_is_int64(op_name):
      op = graph.get_operation_by_name(op_name)
      self.assertEqual(op.get_attr('T'), tf.int64)

    assert_dtype_is_int64('map/TensorArray')
    assert_dtype_is_int64('map/TensorArray_1')
    assert_dtype_is_int64('map/while/TensorArrayReadV3')
    assert_t_is_int64('map/while/TensorArrayWrite/TensorArrayWriteV3')
    assert_t_is_int64(
        'map/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3')
    assert_dtype_is_int64('map/TensorArrayStack/TensorArrayGatherV3')

1405

1406
1407
class NearestNeighborUpsamplingTest(test_case.TestCase):

1408
  def test_upsampling_with_single_scale(self):
1409
1410
1411

    def graph_fn(inputs):
      custom_op_output = ops.nearest_neighbor_upsampling(inputs, scale=2)
1412
1413
1414
1415
1416
1417
1418
1419
1420
      return custom_op_output
    inputs = np.reshape(np.arange(4).astype(np.float32), [1, 2, 2, 1])
    custom_op_output = self.execute(graph_fn, [inputs])

    expected_output = [[[[0], [0], [1], [1]],
                        [[0], [0], [1], [1]],
                        [[2], [2], [3], [3]],
                        [[2], [2], [3], [3]]]]
    self.assertAllClose(custom_op_output, expected_output)
1421

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
  def test_upsampling_with_separate_height_width_scales(self):

    def graph_fn(inputs):
      custom_op_output = ops.nearest_neighbor_upsampling(inputs,
                                                         height_scale=2,
                                                         width_scale=3)
      return custom_op_output
    inputs = np.reshape(np.arange(4).astype(np.float32), [1, 2, 2, 1])
    custom_op_output = self.execute(graph_fn, [inputs])

    expected_output = [[[[0], [0], [0], [1], [1], [1]],
                        [[0], [0], [0], [1], [1], [1]],
                        [[2], [2], [2], [3], [3], [3]],
                        [[2], [2], [2], [3], [3], [3]]]]
    self.assertAllClose(custom_op_output, expected_output)

1438

1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
class MatmulGatherOnZerothAxis(test_case.TestCase):

  def test_gather_2d(self):

    def graph_fn(params, indices):
      return ops.matmul_gather_on_zeroth_axis(params, indices)

    params = np.array([[1, 2, 3, 4],
                       [5, 6, 7, 8],
                       [9, 10, 11, 12],
                       [0, 1, 0, 0]], dtype=np.float32)
1450
    indices = np.array([2, 2, 1], dtype=np.int32)
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
    expected_output = np.array([[9, 10, 11, 12], [9, 10, 11, 12], [5, 6, 7, 8]])
    gather_output = self.execute(graph_fn, [params, indices])
    self.assertAllClose(gather_output, expected_output)

  def test_gather_3d(self):

    def graph_fn(params, indices):
      return ops.matmul_gather_on_zeroth_axis(params, indices)

    params = np.array([[[1, 2], [3, 4]],
                       [[5, 6], [7, 8]],
                       [[9, 10], [11, 12]],
                       [[0, 1], [0, 0]]], dtype=np.float32)
1464
    indices = np.array([0, 3, 1], dtype=np.int32)
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
    expected_output = np.array([[[1, 2], [3, 4]],
                                [[0, 1], [0, 0]],
                                [[5, 6], [7, 8]]])
    gather_output = self.execute(graph_fn, [params, indices])
    self.assertAllClose(gather_output, expected_output)

  def test_gather_with_many_indices(self):

    def graph_fn(params, indices):
      return ops.matmul_gather_on_zeroth_axis(params, indices)

    params = np.array([[1, 2, 3, 4],
                       [5, 6, 7, 8],
                       [9, 10, 11, 12],
                       [0, 1, 0, 0]], dtype=np.float32)
1480
    indices = np.array([0, 0, 0, 0, 0, 0], dtype=np.int32)
1481
1482
1483
1484
    expected_output = np.array(6*[[1, 2, 3, 4]])
    gather_output = self.execute(graph_fn, [params, indices])
    self.assertAllClose(gather_output, expected_output)

1485
  def test_gather_with_dynamic_shape_input(self):
1486
1487
1488
1489

    def graph_fn(params, indices):
      return ops.matmul_gather_on_zeroth_axis(params, indices)

1490
1491
1492
1493
1494
1495
    params = np.array([[1, 2, 3, 4],
                       [5, 6, 7, 8],
                       [9, 10, 11, 12],
                       [0, 1, 0, 0]], dtype=np.float32)
    indices = np.array([0, 0, 0, 0, 0, 0])
    expected_output = np.array(6*[[1, 2, 3, 4]])
1496
1497
    gather_output = self.execute(graph_fn, [params, indices])
    self.assertAllClose(gather_output, expected_output)
1498

1499

1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
class FpnFeatureLevelsTest(test_case.TestCase):

  def test_correct_fpn_levels(self):
    image_size = 640
    pretraininig_image_size = 224
    image_ratio = image_size * 1.0 / pretraininig_image_size
    boxes = np.array(
        [
            [
                [0, 0, 111, 111],  # Level 0.
                [0, 0, 113, 113],  # Level 1.
                [0, 0, 223, 223],  # Level 1.
                [0, 0, 225, 225],  # Level 2.
                [0, 0, 449, 449]   # Level 3.
            ],
        ],
        dtype=np.float32) / image_size

    def graph_fn(boxes):
      return ops.fpn_feature_levels(
          num_levels=5, unit_scale_index=2, image_ratio=image_ratio,
          boxes=boxes)

    levels = self.execute(graph_fn, [boxes])
    self.assertAllEqual([[0, 1, 1, 2, 3]], levels)
1525
1526


1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
class TestBfloat16ToFloat32(test_case.TestCase):

  def test_convert_list(self):
    var_list = [
        tf.constant([1.], dtype=tf.bfloat16),
        tf.constant([2], dtype=tf.int32)
    ]
    casted_var_list = ops.bfloat16_to_float32_nested(var_list)
    self.assertEqual(casted_var_list[0].dtype, tf.float32)
    self.assertEqual(casted_var_list[1].dtype, tf.int32)

  def test_convert_tensor_dict(self):
    tensor_dict = {
        'key1': tf.constant([1.], dtype=tf.bfloat16),
        'key2': [
            tf.constant([0.5], dtype=tf.bfloat16),
            tf.constant([7], dtype=tf.int32),
        ],
        'key3': tf.constant([2], dtype=tf.uint8),
    }
    tensor_dict = ops.bfloat16_to_float32_nested(tensor_dict)

    self.assertEqual(tensor_dict['key1'].dtype, tf.float32)
    self.assertEqual(tensor_dict['key2'][0].dtype, tf.float32)
    self.assertEqual(tensor_dict['key2'][1].dtype, tf.int32)
    self.assertEqual(tensor_dict['key3'].dtype, tf.uint8)


class TestGatherWithPaddingValues(test_case.TestCase):

  def test_gather_with_padding_values(self):
    expected_gathered_tensor = [
        [0, 0, 0.2, 0.2],
        [0, 0, 0, 0],
        [0, 0, 0.1, 0.1],
        [0, 0, 0, 0],
    ]
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578

    def graph_fn():
      indices = tf.constant([1, -1, 0, -1])
      input_tensor = tf.constant([[0, 0, 0.1, 0.1], [0, 0, 0.2, 0.2]],
                                 dtype=tf.float32)

      gathered_tensor = ops.gather_with_padding_values(
          input_tensor,
          indices=indices,
          padding_value=tf.zeros_like(input_tensor[0]))
      self.assertEqual(gathered_tensor.dtype, tf.float32)

      return gathered_tensor

    gathered_tensor_np = self.execute(graph_fn, [])
1579
1580
1581
    self.assertAllClose(expected_gathered_tensor, gathered_tensor_np)


1582
1583
1584



1585
1586


1587
1588
if __name__ == '__main__':
  tf.test.main()