coco_evaluation.py 58.5 KB
Newer Older
Zhichao Lu's avatar
Zhichao Lu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Class for evaluating object detections with COCO metrics."""
pkulzc's avatar
pkulzc committed
16
17
18
19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20
import numpy as np
pkulzc's avatar
pkulzc committed
21
from six.moves import zip
22
import tensorflow.compat.v1 as tf
23
24
25

from object_detection.core import standard_fields
from object_detection.metrics import coco_tools
26
from object_detection.utils import json_utils
27
28
29
30
31
32
from object_detection.utils import object_detection_evaluation


class CocoDetectionEvaluator(object_detection_evaluation.DetectionEvaluator):
  """Class to evaluate COCO detection metrics."""

33
34
35
36
  def __init__(self,
               categories,
               include_metrics_per_category=False,
               all_metrics_per_category=False):
37
38
39
40
41
42
    """Constructor.

    Args:
      categories: A list of dicts, each of which has the following keys -
        'id': (required) an integer id uniquely identifying this category.
        'name': (required) string representing category name e.g., 'cat', 'dog'.
43
      include_metrics_per_category: If True, include metrics for each category.
44
45
46
47
48
49
50
51
52
53
54
55
56
57
      all_metrics_per_category: Whether to include all the summary metrics for
        each category in per_category_ap. Be careful with setting it to true if
        you have more than handful of categories, because it will pollute
        your mldash.
    """
    super(CocoDetectionEvaluator, self).__init__(categories)
    # _image_ids is a dictionary that maps unique image ids to Booleans which
    # indicate whether a corresponding detection has been added.
    self._image_ids = {}
    self._groundtruth_list = []
    self._detection_boxes_list = []
    self._category_id_set = set([cat['id'] for cat in self._categories])
    self._annotation_id = 1
    self._metrics = None
58
    self._include_metrics_per_category = include_metrics_per_category
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    self._all_metrics_per_category = all_metrics_per_category

  def clear(self):
    """Clears the state to prepare for a fresh evaluation."""
    self._image_ids.clear()
    self._groundtruth_list = []
    self._detection_boxes_list = []

  def add_single_ground_truth_image_info(self,
                                         image_id,
                                         groundtruth_dict):
    """Adds groundtruth for a single image to be used for evaluation.

    If the image has already been added, a warning is logged, and groundtruth is
    ignored.

    Args:
      image_id: A unique string/integer identifier for the image.
      groundtruth_dict: A dictionary containing -
        InputDataFields.groundtruth_boxes: float32 numpy array of shape
          [num_boxes, 4] containing `num_boxes` groundtruth boxes of the format
          [ymin, xmin, ymax, xmax] in absolute image coordinates.
        InputDataFields.groundtruth_classes: integer numpy array of shape
          [num_boxes] containing 1-indexed groundtruth classes for the boxes.
83
84
        InputDataFields.groundtruth_is_crowd (optional): integer numpy array of
          shape [num_boxes] containing iscrowd flag for groundtruth boxes.
85
86
87
88
89
90
91
92
93
        InputDataFields.groundtruth_area (optional): float numpy array of
          shape [num_boxes] containing the area (in the original absolute
          coordinates) of the annotated object.
        InputDataFields.groundtruth_keypoints (optional): float numpy array of
          keypoints with shape [num_boxes, num_keypoints, 2].
        InputDataFields.groundtruth_keypoint_visibilities (optional): integer
          numpy array of keypoint visibilities with shape [num_gt_boxes,
          num_keypoints]. Integer is treated as an enum with 0=not labeled,
          1=labeled but not visible and 2=labeled and visible.
94
95
96
97
98
99
    """
    if image_id in self._image_ids:
      tf.logging.warning('Ignoring ground truth with image id %s since it was '
                         'previously added', image_id)
      return

100
    # Drop optional fields if empty tensor.
101
102
    groundtruth_is_crowd = groundtruth_dict.get(
        standard_fields.InputDataFields.groundtruth_is_crowd)
103
104
105
106
107
108
    groundtruth_area = groundtruth_dict.get(
        standard_fields.InputDataFields.groundtruth_area)
    groundtruth_keypoints = groundtruth_dict.get(
        standard_fields.InputDataFields.groundtruth_keypoints)
    groundtruth_keypoint_visibilities = groundtruth_dict.get(
        standard_fields.InputDataFields.groundtruth_keypoint_visibilities)
109
110
    if groundtruth_is_crowd is not None and not groundtruth_is_crowd.shape[0]:
      groundtruth_is_crowd = None
111
112
113
114
115
116
117
    if groundtruth_area is not None and not groundtruth_area.shape[0]:
      groundtruth_area = None
    if groundtruth_keypoints is not None and not groundtruth_keypoints.shape[0]:
      groundtruth_keypoints = None
    if groundtruth_keypoint_visibilities is not None and not groundtruth_keypoint_visibilities.shape[
        0]:
      groundtruth_keypoint_visibilities = None
118

119
    self._groundtruth_list.extend(
120
        coco_tools.ExportSingleImageGroundtruthToCoco(
121
122
123
            image_id=image_id,
            next_annotation_id=self._annotation_id,
            category_id_set=self._category_id_set,
124
125
126
127
            groundtruth_boxes=groundtruth_dict[
                standard_fields.InputDataFields.groundtruth_boxes],
            groundtruth_classes=groundtruth_dict[
                standard_fields.InputDataFields.groundtruth_classes],
128
129
130
131
132
133
            groundtruth_is_crowd=groundtruth_is_crowd,
            groundtruth_area=groundtruth_area,
            groundtruth_keypoints=groundtruth_keypoints,
            groundtruth_keypoint_visibilities=groundtruth_keypoint_visibilities)
    )

134
135
    self._annotation_id += groundtruth_dict[standard_fields.InputDataFields.
                                            groundtruth_boxes].shape[0]
136
    # Boolean to indicate whether a detection has been added for this image.
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    self._image_ids[image_id] = False

  def add_single_detected_image_info(self,
                                     image_id,
                                     detections_dict):
    """Adds detections for a single image to be used for evaluation.

    If a detection has already been added for this image id, a warning is
    logged, and the detection is skipped.

    Args:
      image_id: A unique string/integer identifier for the image.
      detections_dict: A dictionary containing -
        DetectionResultFields.detection_boxes: float32 numpy array of shape
          [num_boxes, 4] containing `num_boxes` detection boxes of the format
          [ymin, xmin, ymax, xmax] in absolute image coordinates.
        DetectionResultFields.detection_scores: float32 numpy array of shape
          [num_boxes] containing detection scores for the boxes.
        DetectionResultFields.detection_classes: integer numpy array of shape
          [num_boxes] containing 1-indexed detection classes for the boxes.
157
158
        DetectionResultFields.detection_keypoints (optional): float numpy array
          of keypoints with shape [num_boxes, num_keypoints, 2].
159
160
161
162
163
164
165
166
167
168
169
    Raises:
      ValueError: If groundtruth for the image_id is not available.
    """
    if image_id not in self._image_ids:
      raise ValueError('Missing groundtruth for image id: {}'.format(image_id))

    if self._image_ids[image_id]:
      tf.logging.warning('Ignoring detection with image id %s since it was '
                         'previously added', image_id)
      return

170
171
172
173
174
    # Drop optional fields if empty tensor.
    detection_keypoints = detections_dict.get(
        standard_fields.DetectionResultFields.detection_keypoints)
    if detection_keypoints is not None and not detection_keypoints.shape[0]:
      detection_keypoints = None
175
176
177
178
    self._detection_boxes_list.extend(
        coco_tools.ExportSingleImageDetectionBoxesToCoco(
            image_id=image_id,
            category_id_set=self._category_id_set,
179
180
181
182
183
184
185
            detection_boxes=detections_dict[
                standard_fields.DetectionResultFields.detection_boxes],
            detection_scores=detections_dict[
                standard_fields.DetectionResultFields.detection_scores],
            detection_classes=detections_dict[
                standard_fields.DetectionResultFields.detection_classes],
            detection_keypoints=detection_keypoints))
186
187
    self._image_ids[image_id] = True

188
189
190
191
192
193
194
195
196
197
198
199
200
  def dump_detections_to_json_file(self, json_output_path):
    """Saves the detections into json_output_path in the format used by MS COCO.

    Args:
      json_output_path: String containing the output file's path. It can be also
        None. In that case nothing will be written to the output file.
    """
    if json_output_path and json_output_path is not None:
      with tf.gfile.GFile(json_output_path, 'w') as fid:
        tf.logging.info('Dumping detections to output json file.')
        json_utils.Dump(
            obj=self._detection_boxes_list, fid=fid, float_digits=4, indent=2)

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
  def evaluate(self):
    """Evaluates the detection boxes and returns a dictionary of coco metrics.

    Returns:
      A dictionary holding -

      1. summary_metrics:
      'DetectionBoxes_Precision/mAP': mean average precision over classes
        averaged over IOU thresholds ranging from .5 to .95 with .05
        increments.
      'DetectionBoxes_Precision/mAP@.50IOU': mean average precision at 50% IOU
      'DetectionBoxes_Precision/mAP@.75IOU': mean average precision at 75% IOU
      'DetectionBoxes_Precision/mAP (small)': mean average precision for small
        objects (area < 32^2 pixels).
      'DetectionBoxes_Precision/mAP (medium)': mean average precision for
        medium sized objects (32^2 pixels < area < 96^2 pixels).
      'DetectionBoxes_Precision/mAP (large)': mean average precision for large
        objects (96^2 pixels < area < 10000^2 pixels).
      'DetectionBoxes_Recall/AR@1': average recall with 1 detection.
      'DetectionBoxes_Recall/AR@10': average recall with 10 detections.
      'DetectionBoxes_Recall/AR@100': average recall with 100 detections.
      'DetectionBoxes_Recall/AR@100 (small)': average recall for small objects
        with 100.
      'DetectionBoxes_Recall/AR@100 (medium)': average recall for medium objects
        with 100.
      'DetectionBoxes_Recall/AR@100 (large)': average recall for large objects
        with 100 detections.

229
230
      2. per_category_ap: if include_metrics_per_category is True, category
      specific results with keys of the form:
231
232
233
234
235
      'Precision mAP ByCategory/category' (without the supercategory part if
      no supercategories exist). For backward compatibility
      'PerformanceByCategory' is included in the output regardless of
      all_metrics_per_category.
    """
236
    tf.logging.info('Performing evaluation on %d images.', len(self._image_ids))
237
238
239
240
241
242
243
244
245
246
247
    groundtruth_dict = {
        'annotations': self._groundtruth_list,
        'images': [{'id': image_id} for image_id in self._image_ids],
        'categories': self._categories
    }
    coco_wrapped_groundtruth = coco_tools.COCOWrapper(groundtruth_dict)
    coco_wrapped_detections = coco_wrapped_groundtruth.LoadAnnotations(
        self._detection_boxes_list)
    box_evaluator = coco_tools.COCOEvalWrapper(
        coco_wrapped_groundtruth, coco_wrapped_detections, agnostic_mode=False)
    box_metrics, box_per_category_ap = box_evaluator.ComputeMetrics(
248
        include_metrics_per_category=self._include_metrics_per_category,
249
250
251
        all_metrics_per_category=self._all_metrics_per_category)
    box_metrics.update(box_per_category_ap)
    box_metrics = {'DetectionBoxes_'+ key: value
252
                   for key, value in iter(box_metrics.items())}
253
254
    return box_metrics

255
256
  def add_eval_dict(self, eval_dict):
    """Observes an evaluation result dict for a single example.
257

258
259
    When executing eagerly, once all observations have been observed by this
    method you can use `.evaluate()` to get the final metrics.
260

261
262
    When using `tf.estimator.Estimator` for evaluation this function is used by
    `get_estimator_eval_metric_ops()` to construct the metric update op.
263

264
    Args:
265
266
267
      eval_dict: A dictionary that holds tensors for evaluating an object
        detection model, returned from
        eval_util.result_dict_for_single_example().
268
269

    Returns:
270
271
      None when executing eagerly, or an update_op that can be used to update
      the eval metrics in `tf.estimator.EstimatorSpec`.
272
273
    """
    def update_op(
274
275
276
        image_id_batched,
        groundtruth_boxes_batched,
        groundtruth_classes_batched,
277
        groundtruth_is_crowd_batched,
278
279
280
281
        num_gt_boxes_per_image,
        detection_boxes_batched,
        detection_scores_batched,
        detection_classes_batched,
282
283
        num_det_boxes_per_image,
        is_annotated_batched):
284
285
      """Update operation for adding batch of images to Coco evaluator."""

286
      for (image_id, gt_box, gt_class, gt_is_crowd, num_gt_box, det_box,
287
           det_score, det_class, num_det_box, is_annotated) in zip(
288
               image_id_batched, groundtruth_boxes_batched,
289
290
               groundtruth_classes_batched, groundtruth_is_crowd_batched,
               num_gt_boxes_per_image,
291
               detection_boxes_batched, detection_scores_batched,
292
293
294
295
296
297
298
299
300
301
302
303
304
305
               detection_classes_batched, num_det_boxes_per_image,
               is_annotated_batched):
        if is_annotated:
          self.add_single_ground_truth_image_info(
              image_id, {
                  'groundtruth_boxes': gt_box[:num_gt_box],
                  'groundtruth_classes': gt_class[:num_gt_box],
                  'groundtruth_is_crowd': gt_is_crowd[:num_gt_box]
              })
          self.add_single_detected_image_info(
              image_id,
              {'detection_boxes': det_box[:num_det_box],
               'detection_scores': det_score[:num_det_box],
               'detection_classes': det_class[:num_det_box]})
306

307
308
309
310
311
312
313
314
315
316
317
318
319
    # Unpack items from the evaluation dictionary.
    input_data_fields = standard_fields.InputDataFields
    detection_fields = standard_fields.DetectionResultFields
    image_id = eval_dict[input_data_fields.key]
    groundtruth_boxes = eval_dict[input_data_fields.groundtruth_boxes]
    groundtruth_classes = eval_dict[input_data_fields.groundtruth_classes]
    groundtruth_is_crowd = eval_dict.get(
        input_data_fields.groundtruth_is_crowd, None)
    detection_boxes = eval_dict[detection_fields.detection_boxes]
    detection_scores = eval_dict[detection_fields.detection_scores]
    detection_classes = eval_dict[detection_fields.detection_classes]
    num_gt_boxes_per_image = eval_dict.get(
        'num_groundtruth_boxes_per_image', None)
320
    num_det_boxes_per_image = eval_dict.get('num_det_boxes_per_image', None)
321
    is_annotated = eval_dict.get('is_annotated', None)
322

323
324
    if groundtruth_is_crowd is None:
      groundtruth_is_crowd = tf.zeros_like(groundtruth_classes, dtype=tf.bool)
325
326
327
328
329
    if not image_id.shape.as_list():
      # Apply a batch dimension to all tensors.
      image_id = tf.expand_dims(image_id, 0)
      groundtruth_boxes = tf.expand_dims(groundtruth_boxes, 0)
      groundtruth_classes = tf.expand_dims(groundtruth_classes, 0)
330
      groundtruth_is_crowd = tf.expand_dims(groundtruth_is_crowd, 0)
331
332
333
334
335
336
337
338
339
340
341
342
343
      detection_boxes = tf.expand_dims(detection_boxes, 0)
      detection_scores = tf.expand_dims(detection_scores, 0)
      detection_classes = tf.expand_dims(detection_classes, 0)

      if num_gt_boxes_per_image is None:
        num_gt_boxes_per_image = tf.shape(groundtruth_boxes)[1:2]
      else:
        num_gt_boxes_per_image = tf.expand_dims(num_gt_boxes_per_image, 0)

      if num_det_boxes_per_image is None:
        num_det_boxes_per_image = tf.shape(detection_boxes)[1:2]
      else:
        num_det_boxes_per_image = tf.expand_dims(num_det_boxes_per_image, 0)
344
345
346
347
348

      if is_annotated is None:
        is_annotated = tf.constant([True])
      else:
        is_annotated = tf.expand_dims(is_annotated, 0)
349
350
351
352
353
354
355
356
357
    else:
      if num_gt_boxes_per_image is None:
        num_gt_boxes_per_image = tf.tile(
            tf.shape(groundtruth_boxes)[1:2],
            multiples=tf.shape(groundtruth_boxes)[0:1])
      if num_det_boxes_per_image is None:
        num_det_boxes_per_image = tf.tile(
            tf.shape(detection_boxes)[1:2],
            multiples=tf.shape(detection_boxes)[0:1])
358
359
      if is_annotated is None:
        is_annotated = tf.ones_like(image_id, dtype=tf.bool)
360

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
    return tf.py_func(update_op, [image_id,
                                  groundtruth_boxes,
                                  groundtruth_classes,
                                  groundtruth_is_crowd,
                                  num_gt_boxes_per_image,
                                  detection_boxes,
                                  detection_scores,
                                  detection_classes,
                                  num_det_boxes_per_image,
                                  is_annotated], [])

  def get_estimator_eval_metric_ops(self, eval_dict):
    """Returns a dictionary of eval metric ops.

    Note that once value_op is called, the detections and groundtruth added via
    update_op are cleared.

    This function can take in groundtruth and detections for a batch of images,
    or for a single image. For the latter case, the batch dimension for input
    tensors need not be present.

    Args:
      eval_dict: A dictionary that holds tensors for evaluating object detection
        performance. For single-image evaluation, this dictionary may be
        produced from eval_util.result_dict_for_single_example(). If multi-image
        evaluation, `eval_dict` should contain the fields
        'num_groundtruth_boxes_per_image' and 'num_det_boxes_per_image' to
        properly unpad the tensors from the batch.

    Returns:
      a dictionary of metric names to tuple of value_op and update_op that can
      be used as eval metric ops in tf.estimator.EstimatorSpec. Note that all
      update ops must be run together and similarly all value ops must be run
      together to guarantee correct behaviour.
    """
    update_op = self.add_eval_dict(eval_dict)
397
398
399
400
401
402
403
404
405
406
407
408
    metric_names = ['DetectionBoxes_Precision/mAP',
                    'DetectionBoxes_Precision/mAP@.50IOU',
                    'DetectionBoxes_Precision/mAP@.75IOU',
                    'DetectionBoxes_Precision/mAP (large)',
                    'DetectionBoxes_Precision/mAP (medium)',
                    'DetectionBoxes_Precision/mAP (small)',
                    'DetectionBoxes_Recall/AR@1',
                    'DetectionBoxes_Recall/AR@10',
                    'DetectionBoxes_Recall/AR@100',
                    'DetectionBoxes_Recall/AR@100 (large)',
                    'DetectionBoxes_Recall/AR@100 (medium)',
                    'DetectionBoxes_Recall/AR@100 (small)']
409
410
411
412
    if self._include_metrics_per_category:
      for category_dict in self._categories:
        metric_names.append('DetectionBoxes_PerformanceByCategory/mAP/' +
                            category_dict['name'])
413
414
415
416
417
418
419
420
421
422
423

    def first_value_func():
      self._metrics = self.evaluate()
      self.clear()
      return np.float32(self._metrics[metric_names[0]])

    def value_func_factory(metric_name):
      def value_func():
        return np.float32(self._metrics[metric_name])
      return value_func

424
    # Ensure that the metrics are only evaluated once.
425
426
427
428
429
430
431
432
433
434
    first_value_op = tf.py_func(first_value_func, [], tf.float32)
    eval_metric_ops = {metric_names[0]: (first_value_op, update_op)}
    with tf.control_dependencies([first_value_op]):
      for metric_name in metric_names[1:]:
        eval_metric_ops[metric_name] = (tf.py_func(
            value_func_factory(metric_name), [], np.float32), update_op)
    return eval_metric_ops


def _check_mask_type_and_value(array_name, masks):
435
  """Checks whether mask dtype is uint8 and the values are either 0 or 1."""
436
437
438
439
440
441
442
443
  if masks.dtype != np.uint8:
    raise ValueError('{} must be of type np.uint8. Found {}.'.format(
        array_name, masks.dtype))
  if np.any(np.logical_and(masks != 0, masks != 1)):
    raise ValueError('{} elements can only be either 0 or 1.'.format(
        array_name))


444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
class CocoKeypointEvaluator(CocoDetectionEvaluator):
  """Class to evaluate COCO keypoint metrics."""

  def __init__(self,
               category_id,
               category_keypoints,
               class_text,
               oks_sigmas=None):
    """Constructor.

    Args:
      category_id: An integer id uniquely identifying this category.
      category_keypoints: A list specifying keypoint mappings, with items:
          'id': (required) an integer id identifying the keypoint.
          'name': (required) a string representing the keypoint name.
      class_text: A string representing the category name for which keypoint
        metrics are to be computed.
      oks_sigmas: A dict of keypoint name to standard deviation values for OKS
        metrics. If not provided, default value of 0.05 will be used.
    """
    self._category_id = category_id
    self._category_name = class_text
    self._keypoint_ids = sorted(
        [keypoint['id'] for keypoint in category_keypoints])
    kpt_id_to_name = {kpt['id']: kpt['name'] for kpt in category_keypoints}
    if oks_sigmas:
      self._oks_sigmas = np.array([
          oks_sigmas[kpt_id_to_name[idx]] for idx in self._keypoint_ids
      ])
    else:
      # Default all per-keypoint sigmas to 0.
      self._oks_sigmas = np.full((len(self._keypoint_ids)), 0.05)
      tf.logging.warning('No default keypoint OKS sigmas provided. Will use '
                         '0.05')
    tf.logging.info('Using the following keypoint OKS sigmas: {}'.format(
        self._oks_sigmas))
    self._metrics = None
    super(CocoKeypointEvaluator, self).__init__([{
        'id': self._category_id,
        'name': class_text
    }])

  def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
    """Adds groundtruth for a single image with keypoints.

    If the image has already been added, a warning is logged, and groundtruth
    is ignored.

    Args:
      image_id: A unique string/integer identifier for the image.
      groundtruth_dict: A dictionary containing -
        InputDataFields.groundtruth_boxes: float32 numpy array of shape
          [num_boxes, 4] containing `num_boxes` groundtruth boxes of the format
          [ymin, xmin, ymax, xmax] in absolute image coordinates.
        InputDataFields.groundtruth_classes: integer numpy array of shape
          [num_boxes] containing 1-indexed groundtruth classes for the boxes.
        InputDataFields.groundtruth_is_crowd (optional): integer numpy array of
          shape [num_boxes] containing iscrowd flag for groundtruth boxes.
        InputDataFields.groundtruth_area (optional): float numpy array of
          shape [num_boxes] containing the area (in the original absolute
          coordinates) of the annotated object.
        InputDataFields.groundtruth_keypoints: float numpy array of
          keypoints with shape [num_boxes, num_keypoints, 2].
        InputDataFields.groundtruth_keypoint_visibilities (optional): integer
          numpy array of keypoint visibilities with shape [num_gt_boxes,
          num_keypoints]. Integer is treated as an enum with 0=not labels,
          1=labeled but not visible and 2=labeled and visible.
    """

    # Keep only the groundtruth for our category and its keypoints.
    groundtruth_classes = groundtruth_dict[
        standard_fields.InputDataFields.groundtruth_classes]
    groundtruth_boxes = groundtruth_dict[
        standard_fields.InputDataFields.groundtruth_boxes]
    groundtruth_keypoints = groundtruth_dict[
        standard_fields.InputDataFields.groundtruth_keypoints]
    class_indices = [
        idx for idx, gt_class_id in enumerate(groundtruth_classes)
        if gt_class_id == self._category_id
    ]
    filtered_groundtruth_classes = np.take(
        groundtruth_classes, class_indices, axis=0)
    filtered_groundtruth_boxes = np.take(
        groundtruth_boxes, class_indices, axis=0)
    filtered_groundtruth_keypoints = np.take(
        groundtruth_keypoints, class_indices, axis=0)
    filtered_groundtruth_keypoints = np.take(
        filtered_groundtruth_keypoints, self._keypoint_ids, axis=1)

    filtered_groundtruth_dict = {}
    filtered_groundtruth_dict[
        standard_fields.InputDataFields
        .groundtruth_classes] = filtered_groundtruth_classes
    filtered_groundtruth_dict[standard_fields.InputDataFields
                              .groundtruth_boxes] = filtered_groundtruth_boxes
    filtered_groundtruth_dict[
        standard_fields.InputDataFields
        .groundtruth_keypoints] = filtered_groundtruth_keypoints

    if (standard_fields.InputDataFields.groundtruth_is_crowd in
        groundtruth_dict.keys()):
      groundtruth_is_crowd = groundtruth_dict[
          standard_fields.InputDataFields.groundtruth_is_crowd]
      filtered_groundtruth_is_crowd = np.take(groundtruth_is_crowd,
                                              class_indices, 0)
      filtered_groundtruth_dict[
          standard_fields.InputDataFields
          .groundtruth_is_crowd] = filtered_groundtruth_is_crowd
    if (standard_fields.InputDataFields.groundtruth_area in
        groundtruth_dict.keys()):
      groundtruth_area = groundtruth_dict[
          standard_fields.InputDataFields.groundtruth_area]
      filtered_groundtruth_area = np.take(groundtruth_area, class_indices, 0)
      filtered_groundtruth_dict[
          standard_fields.InputDataFields
          .groundtruth_area] = filtered_groundtruth_area
    if (standard_fields.InputDataFields.groundtruth_keypoint_visibilities in
        groundtruth_dict.keys()):
      groundtruth_keypoint_visibilities = groundtruth_dict[
          standard_fields.InputDataFields.groundtruth_keypoint_visibilities]
      filtered_groundtruth_keypoint_visibilities = np.take(
          groundtruth_keypoint_visibilities, class_indices, axis=0)
      filtered_groundtruth_keypoint_visibilities = np.take(
          filtered_groundtruth_keypoint_visibilities,
          self._keypoint_ids,
          axis=1)
      filtered_groundtruth_dict[
          standard_fields.InputDataFields.
          groundtruth_keypoint_visibilities] = filtered_groundtruth_keypoint_visibilities

    super(CocoKeypointEvaluator,
          self).add_single_ground_truth_image_info(image_id,
                                                   filtered_groundtruth_dict)

  def add_single_detected_image_info(self, image_id, detections_dict):
    """Adds detections for a single image and the specific category for which keypoints are evaluated.

    If a detection has already been added for this image id, a warning is
    logged, and the detection is skipped.

    Args:
      image_id: A unique string/integer identifier for the image.
      detections_dict: A dictionary containing -
        DetectionResultFields.detection_boxes: float32 numpy array of shape
          [num_boxes, 4] containing `num_boxes` detection boxes of the format
          [ymin, xmin, ymax, xmax] in absolute image coordinates.
        DetectionResultFields.detection_scores: float32 numpy array of shape
          [num_boxes] containing detection scores for the boxes.
        DetectionResultFields.detection_classes: integer numpy array of shape
          [num_boxes] containing 1-indexed detection classes for the boxes.
        DetectionResultFields.detection_keypoints: float numpy array of
          keypoints with shape [num_boxes, num_keypoints, 2].

    Raises:
      ValueError: If groundtruth for the image_id is not available.
    """

    # Keep only the detections for our category and its keypoints.
    detection_classes = detections_dict[
        standard_fields.DetectionResultFields.detection_classes]
    detection_boxes = detections_dict[
        standard_fields.DetectionResultFields.detection_boxes]
    detection_scores = detections_dict[
        standard_fields.DetectionResultFields.detection_scores]
    detection_keypoints = detections_dict[
        standard_fields.DetectionResultFields.detection_keypoints]
    class_indices = [
        idx for idx, class_id in enumerate(detection_classes)
        if class_id == self._category_id
    ]
    filtered_detection_classes = np.take(
        detection_classes, class_indices, axis=0)
    filtered_detection_boxes = np.take(detection_boxes, class_indices, axis=0)
    filtered_detection_scores = np.take(detection_scores, class_indices, axis=0)
    filtered_detection_keypoints = np.take(
        detection_keypoints, class_indices, axis=0)
    filtered_detection_keypoints = np.take(
        filtered_detection_keypoints, self._keypoint_ids, axis=1)

    filtered_detections_dict = {}
    filtered_detections_dict[standard_fields.DetectionResultFields
                             .detection_classes] = filtered_detection_classes
    filtered_detections_dict[standard_fields.DetectionResultFields
                             .detection_boxes] = filtered_detection_boxes
    filtered_detections_dict[standard_fields.DetectionResultFields
                             .detection_scores] = filtered_detection_scores
    filtered_detections_dict[standard_fields.DetectionResultFields.
                             detection_keypoints] = filtered_detection_keypoints

    super(CocoKeypointEvaluator,
          self).add_single_detected_image_info(image_id,
                                               filtered_detections_dict)

  def evaluate(self):
    """Evaluates the keypoints and returns a dictionary of coco metrics.

    Returns:
      A dictionary holding -

      1. summary_metrics:
      'Keypoints_Precision/mAP': mean average precision over classes
        averaged over OKS thresholds ranging from .5 to .95 with .05
        increments.
      'Keypoints_Precision/mAP@.50IOU': mean average precision at 50% OKS
      'Keypoints_Precision/mAP@.75IOU': mean average precision at 75% OKS
      'Keypoints_Precision/mAP (medium)': mean average precision for medium
        sized objects (32^2 pixels < area < 96^2 pixels).
      'Keypoints_Precision/mAP (large)': mean average precision for large
        objects (96^2 pixels < area < 10000^2 pixels).
      'Keypoints_Recall/AR@1': average recall with 1 detection.
      'Keypoints_Recall/AR@10': average recall with 10 detections.
      'Keypoints_Recall/AR@100': average recall with 100 detections.
      'Keypoints_Recall/AR@100 (medium)': average recall for medium objects with
        100.
      'Keypoints_Recall/AR@100 (large)': average recall for large objects with
        100 detections.
    """
    tf.logging.info('Performing evaluation on %d images.', len(self._image_ids))
    groundtruth_dict = {
        'annotations': self._groundtruth_list,
        'images': [{'id': image_id} for image_id in self._image_ids],
        'categories': self._categories
    }
    coco_wrapped_groundtruth = coco_tools.COCOWrapper(
        groundtruth_dict, detection_type='bbox')
    coco_wrapped_detections = coco_wrapped_groundtruth.LoadAnnotations(
        self._detection_boxes_list)
    keypoint_evaluator = coco_tools.COCOEvalWrapper(
        coco_wrapped_groundtruth,
        coco_wrapped_detections,
        agnostic_mode=False,
        iou_type='keypoints',
        oks_sigmas=self._oks_sigmas)
    keypoint_metrics, _ = keypoint_evaluator.ComputeMetrics(
        include_metrics_per_category=False, all_metrics_per_category=False)
    keypoint_metrics = {
        'Keypoints_' + key: value
        for key, value in iter(keypoint_metrics.items())
    }
    return keypoint_metrics

  def add_eval_dict(self, eval_dict):
    """Observes an evaluation result dict for a single example.

    When executing eagerly, once all observations have been observed by this
    method you can use `.evaluate()` to get the final metrics.

    When using `tf.estimator.Estimator` for evaluation this function is used by
    `get_estimator_eval_metric_ops()` to construct the metric update op.

    Args:
      eval_dict: A dictionary that holds tensors for evaluating an object
        detection model, returned from
        eval_util.result_dict_for_single_example().

    Returns:
      None when executing eagerly, or an update_op that can be used to update
      the eval metrics in `tf.estimator.EstimatorSpec`.
    """
    def update_op(
        image_id_batched,
        groundtruth_boxes_batched,
        groundtruth_classes_batched,
        groundtruth_is_crowd_batched,
        groundtruth_area_batched,
        groundtruth_keypoints_batched,
        groundtruth_keypoint_visibilities_batched,
        num_gt_boxes_per_image,
        detection_boxes_batched,
        detection_scores_batched,
        detection_classes_batched,
        detection_keypoints_batched,
        num_det_boxes_per_image,
        is_annotated_batched):
      """Update operation for adding batch of images to Coco evaluator."""

      for (image_id, gt_box, gt_class, gt_is_crowd, gt_area, gt_keyp,
           gt_keyp_vis, num_gt_box, det_box, det_score, det_class, det_keyp,
           num_det_box, is_annotated) in zip(
               image_id_batched, groundtruth_boxes_batched,
               groundtruth_classes_batched, groundtruth_is_crowd_batched,
               groundtruth_area_batched, groundtruth_keypoints_batched,
               groundtruth_keypoint_visibilities_batched,
               num_gt_boxes_per_image, detection_boxes_batched,
               detection_scores_batched, detection_classes_batched,
               detection_keypoints_batched, num_det_boxes_per_image,
               is_annotated_batched):
        if is_annotated:
          self.add_single_ground_truth_image_info(
              image_id, {
                  'groundtruth_boxes': gt_box[:num_gt_box],
                  'groundtruth_classes': gt_class[:num_gt_box],
                  'groundtruth_is_crowd': gt_is_crowd[:num_gt_box],
                  'groundtruth_area': gt_area[:num_gt_box],
                  'groundtruth_keypoints': gt_keyp[:num_gt_box],
                  'groundtruth_keypoint_visibilities': gt_keyp_vis[:num_gt_box]
              })
          self.add_single_detected_image_info(
              image_id, {
                  'detection_boxes': det_box[:num_det_box],
                  'detection_scores': det_score[:num_det_box],
                  'detection_classes': det_class[:num_det_box],
                  'detection_keypoints': det_keyp[:num_det_box],
              })

    # Unpack items from the evaluation dictionary.
    input_data_fields = standard_fields.InputDataFields
    detection_fields = standard_fields.DetectionResultFields
    image_id = eval_dict[input_data_fields.key]
    groundtruth_boxes = eval_dict[input_data_fields.groundtruth_boxes]
    groundtruth_classes = eval_dict[input_data_fields.groundtruth_classes]
    groundtruth_is_crowd = eval_dict.get(input_data_fields.groundtruth_is_crowd,
                                         None)
    groundtruth_area = eval_dict.get(input_data_fields.groundtruth_area, None)
    groundtruth_keypoints = eval_dict[input_data_fields.groundtruth_keypoints]
    groundtruth_keypoint_visibilities = eval_dict.get(
        input_data_fields.groundtruth_keypoint_visibilities, None)
    detection_boxes = eval_dict[detection_fields.detection_boxes]
    detection_scores = eval_dict[detection_fields.detection_scores]
    detection_classes = eval_dict[detection_fields.detection_classes]
    detection_keypoints = eval_dict[detection_fields.detection_keypoints]
    num_gt_boxes_per_image = eval_dict.get(
        'num_groundtruth_boxes_per_image', None)
    num_det_boxes_per_image = eval_dict.get('num_det_boxes_per_image', None)
    is_annotated = eval_dict.get('is_annotated', None)

    if groundtruth_is_crowd is None:
      groundtruth_is_crowd = tf.zeros_like(groundtruth_classes, dtype=tf.bool)

    if groundtruth_area is None:
      groundtruth_area = tf.zeros_like(groundtruth_classes, dtype=tf.float32)

    if not image_id.shape.as_list():
      # Apply a batch dimension to all tensors.
      image_id = tf.expand_dims(image_id, 0)
      groundtruth_boxes = tf.expand_dims(groundtruth_boxes, 0)
      groundtruth_classes = tf.expand_dims(groundtruth_classes, 0)
      groundtruth_is_crowd = tf.expand_dims(groundtruth_is_crowd, 0)
      groundtruth_area = tf.expand_dims(groundtruth_area, 0)
      groundtruth_keypoints = tf.expand_dims(groundtruth_keypoints, 0)
      detection_boxes = tf.expand_dims(detection_boxes, 0)
      detection_scores = tf.expand_dims(detection_scores, 0)
      detection_classes = tf.expand_dims(detection_classes, 0)
      detection_keypoints = tf.expand_dims(detection_keypoints, 0)

      if num_gt_boxes_per_image is None:
        num_gt_boxes_per_image = tf.shape(groundtruth_boxes)[1:2]
      else:
        num_gt_boxes_per_image = tf.expand_dims(num_gt_boxes_per_image, 0)

      if num_det_boxes_per_image is None:
        num_det_boxes_per_image = tf.shape(detection_boxes)[1:2]
      else:
        num_det_boxes_per_image = tf.expand_dims(num_det_boxes_per_image, 0)

      if is_annotated is None:
        is_annotated = tf.constant([True])
      else:
        is_annotated = tf.expand_dims(is_annotated, 0)

      if groundtruth_keypoint_visibilities is None:
        groundtruth_keypoint_visibilities = tf.fill([
            tf.shape(groundtruth_boxes)[1],
            tf.shape(groundtruth_keypoints)[2]
        ], tf.constant(2, dtype=tf.int32))
      groundtruth_keypoint_visibilities = tf.expand_dims(
          groundtruth_keypoint_visibilities, 0)
    else:
      if num_gt_boxes_per_image is None:
        num_gt_boxes_per_image = tf.tile(
            tf.shape(groundtruth_boxes)[1:2],
            multiples=tf.shape(groundtruth_boxes)[0:1])
      if num_det_boxes_per_image is None:
        num_det_boxes_per_image = tf.tile(
            tf.shape(detection_boxes)[1:2],
            multiples=tf.shape(detection_boxes)[0:1])
      if is_annotated is None:
        is_annotated = tf.ones_like(image_id, dtype=tf.bool)
      if groundtruth_keypoint_visibilities is None:
        groundtruth_keypoint_visibilities = tf.fill([
            tf.shape(groundtruth_keypoints)[1],
            tf.shape(groundtruth_keypoints)[2]
        ], tf.constant(2, dtype=tf.int32))
        groundtruth_keypoint_visibilities = tf.tile(
            tf.expand_dims(groundtruth_keypoint_visibilities, 0),
            multiples=[tf.shape(groundtruth_keypoints)[0], 1, 1])

    return tf.py_func(update_op, [
        image_id, groundtruth_boxes, groundtruth_classes, groundtruth_is_crowd,
        groundtruth_area, groundtruth_keypoints,
        groundtruth_keypoint_visibilities, num_gt_boxes_per_image,
        detection_boxes, detection_scores, detection_classes,
        detection_keypoints, num_det_boxes_per_image, is_annotated
    ], [])

  def get_estimator_eval_metric_ops(self, eval_dict):
    """Returns a dictionary of eval metric ops.

    Note that once value_op is called, the detections and groundtruth added via
    update_op are cleared.

    This function can take in groundtruth and detections for a batch of images,
    or for a single image. For the latter case, the batch dimension for input
    tensors need not be present.

    Args:
      eval_dict: A dictionary that holds tensors for evaluating object detection
        performance. For single-image evaluation, this dictionary may be
        produced from eval_util.result_dict_for_single_example(). If multi-image
        evaluation, `eval_dict` should contain the fields
        'num_groundtruth_boxes_per_image' and 'num_det_boxes_per_image' to
        properly unpad the tensors from the batch.

    Returns:
      a dictionary of metric names to tuple of value_op and update_op that can
      be used as eval metric ops in tf.estimator.EstimatorSpec. Note that all
      update ops must be run together and similarly all value ops must be run
      together to guarantee correct behaviour.
    """
    update_op = self.add_eval_dict(eval_dict)
    category = self._category_name
    metric_names = [
        'Keypoints_Precision/mAP ByCategory/{}'.format(category),
        'Keypoints_Precision/mAP@.50IOU ByCategory/{}'.format(category),
        'Keypoints_Precision/mAP@.75IOU ByCategory/{}'.format(category),
        'Keypoints_Precision/mAP (large) ByCategory/{}'.format(category),
        'Keypoints_Precision/mAP (medium) ByCategory/{}'.format(category),
        'Keypoints_Recall/AR@1 ByCategory/{}'.format(category),
        'Keypoints_Recall/AR@10 ByCategory/{}'.format(category),
        'Keypoints_Recall/AR@100 ByCategory/{}'.format(category),
        'Keypoints_Recall/AR@100 (large) ByCategory/{}'.format(category),
        'Keypoints_Recall/AR@100 (medium) ByCategory/{}'.format(category)
    ]

    def first_value_func():
      self._metrics = self.evaluate()
      self.clear()
      return np.float32(self._metrics[metric_names[0]])

    def value_func_factory(metric_name):
      def value_func():
        return np.float32(self._metrics[metric_name])
      return value_func

    # Ensure that the metrics are only evaluated once.
    first_value_op = tf.py_func(first_value_func, [], tf.float32)
    eval_metric_ops = {metric_names[0]: (first_value_op, update_op)}
    with tf.control_dependencies([first_value_op]):
      for metric_name in metric_names[1:]:
        eval_metric_ops[metric_name] = (tf.py_func(
            value_func_factory(metric_name), [], np.float32), update_op)
    return eval_metric_ops


898
899
900
class CocoMaskEvaluator(object_detection_evaluation.DetectionEvaluator):
  """Class to evaluate COCO detection metrics."""

901
  def __init__(self, categories, include_metrics_per_category=False):
902
903
904
905
906
907
    """Constructor.

    Args:
      categories: A list of dicts, each of which has the following keys -
        'id': (required) an integer id uniquely identifying this category.
        'name': (required) string representing category name e.g., 'cat', 'dog'.
908
      include_metrics_per_category: If True, include metrics for each category.
909
910
911
912
913
914
915
916
    """
    super(CocoMaskEvaluator, self).__init__(categories)
    self._image_id_to_mask_shape_map = {}
    self._image_ids_with_detections = set([])
    self._groundtruth_list = []
    self._detection_masks_list = []
    self._category_id_set = set([cat['id'] for cat in self._categories])
    self._annotation_id = 1
917
    self._include_metrics_per_category = include_metrics_per_category
918
919
920
921
922
923
924
925
926
927
928
929
930

  def clear(self):
    """Clears the state to prepare for a fresh evaluation."""
    self._image_id_to_mask_shape_map.clear()
    self._image_ids_with_detections.clear()
    self._groundtruth_list = []
    self._detection_masks_list = []

  def add_single_ground_truth_image_info(self,
                                         image_id,
                                         groundtruth_dict):
    """Adds groundtruth for a single image to be used for evaluation.

931
932
933
    If the image has already been added, a warning is logged, and groundtruth is
    ignored.

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
    Args:
      image_id: A unique string/integer identifier for the image.
      groundtruth_dict: A dictionary containing -
        InputDataFields.groundtruth_boxes: float32 numpy array of shape
          [num_boxes, 4] containing `num_boxes` groundtruth boxes of the format
          [ymin, xmin, ymax, xmax] in absolute image coordinates.
        InputDataFields.groundtruth_classes: integer numpy array of shape
          [num_boxes] containing 1-indexed groundtruth classes for the boxes.
        InputDataFields.groundtruth_instance_masks: uint8 numpy array of shape
          [num_boxes, image_height, image_width] containing groundtruth masks
          corresponding to the boxes. The elements of the array must be in
          {0, 1}.
    """
    if image_id in self._image_id_to_mask_shape_map:
      tf.logging.warning('Ignoring ground truth with image id %s since it was '
                         'previously added', image_id)
      return

    groundtruth_instance_masks = groundtruth_dict[
        standard_fields.InputDataFields.groundtruth_instance_masks]
    _check_mask_type_and_value(standard_fields.InputDataFields.
                               groundtruth_instance_masks,
                               groundtruth_instance_masks)
    self._groundtruth_list.extend(
        coco_tools.
        ExportSingleImageGroundtruthToCoco(
            image_id=image_id,
            next_annotation_id=self._annotation_id,
            category_id_set=self._category_id_set,
            groundtruth_boxes=groundtruth_dict[standard_fields.InputDataFields.
                                               groundtruth_boxes],
            groundtruth_classes=groundtruth_dict[standard_fields.
                                                 InputDataFields.
                                                 groundtruth_classes],
            groundtruth_masks=groundtruth_instance_masks))
    self._annotation_id += groundtruth_dict[standard_fields.InputDataFields.
                                            groundtruth_boxes].shape[0]
    self._image_id_to_mask_shape_map[image_id] = groundtruth_dict[
        standard_fields.InputDataFields.groundtruth_instance_masks].shape

  def add_single_detected_image_info(self,
                                     image_id,
                                     detections_dict):
    """Adds detections for a single image to be used for evaluation.

979
980
981
    If a detection has already been added for this image id, a warning is
    logged, and the detection is skipped.

982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
    Args:
      image_id: A unique string/integer identifier for the image.
      detections_dict: A dictionary containing -
        DetectionResultFields.detection_scores: float32 numpy array of shape
          [num_boxes] containing detection scores for the boxes.
        DetectionResultFields.detection_classes: integer numpy array of shape
          [num_boxes] containing 1-indexed detection classes for the boxes.
        DetectionResultFields.detection_masks: optional uint8 numpy array of
          shape [num_boxes, image_height, image_width] containing instance
          masks corresponding to the boxes. The elements of the array must be
          in {0, 1}.

    Raises:
      ValueError: If groundtruth for the image_id is not available or if
        spatial shapes of groundtruth_instance_masks and detection_masks are
        incompatible.
    """
    if image_id not in self._image_id_to_mask_shape_map:
      raise ValueError('Missing groundtruth for image id: {}'.format(image_id))

    if image_id in self._image_ids_with_detections:
      tf.logging.warning('Ignoring detection with image id %s since it was '
                         'previously added', image_id)
      return

    groundtruth_masks_shape = self._image_id_to_mask_shape_map[image_id]
    detection_masks = detections_dict[standard_fields.DetectionResultFields.
                                      detection_masks]
    if groundtruth_masks_shape[1:] != detection_masks.shape[1:]:
      raise ValueError('Spatial shape of groundtruth masks and detection masks '
                       'are incompatible: {} vs {}'.format(
                           groundtruth_masks_shape,
                           detection_masks.shape))
    _check_mask_type_and_value(standard_fields.DetectionResultFields.
                               detection_masks,
                               detection_masks)
    self._detection_masks_list.extend(
        coco_tools.ExportSingleImageDetectionMasksToCoco(
            image_id=image_id,
            category_id_set=self._category_id_set,
            detection_masks=detection_masks,
            detection_scores=detections_dict[standard_fields.
                                             DetectionResultFields.
                                             detection_scores],
            detection_classes=detections_dict[standard_fields.
                                              DetectionResultFields.
                                              detection_classes]))
    self._image_ids_with_detections.update([image_id])

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
  def dump_detections_to_json_file(self, json_output_path):
    """Saves the detections into json_output_path in the format used by MS COCO.

    Args:
      json_output_path: String containing the output file's path. It can be also
        None. In that case nothing will be written to the output file.
    """
    if json_output_path and json_output_path is not None:
      tf.logging.info('Dumping detections to output json file.')
      with tf.gfile.GFile(json_output_path, 'w') as fid:
        json_utils.Dump(
            obj=self._detection_masks_list, fid=fid, float_digits=4, indent=2)

1044
1045
1046
1047
1048
1049
1050
  def evaluate(self):
    """Evaluates the detection masks and returns a dictionary of coco metrics.

    Returns:
      A dictionary holding -

      1. summary_metrics:
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
      'DetectionMasks_Precision/mAP': mean average precision over classes
        averaged over IOU thresholds ranging from .5 to .95 with .05 increments.
      'DetectionMasks_Precision/mAP@.50IOU': mean average precision at 50% IOU.
      'DetectionMasks_Precision/mAP@.75IOU': mean average precision at 75% IOU.
      'DetectionMasks_Precision/mAP (small)': mean average precision for small
        objects (area < 32^2 pixels).
      'DetectionMasks_Precision/mAP (medium)': mean average precision for medium
        sized objects (32^2 pixels < area < 96^2 pixels).
      'DetectionMasks_Precision/mAP (large)': mean average precision for large
        objects (96^2 pixels < area < 10000^2 pixels).
      'DetectionMasks_Recall/AR@1': average recall with 1 detection.
      'DetectionMasks_Recall/AR@10': average recall with 10 detections.
      'DetectionMasks_Recall/AR@100': average recall with 100 detections.
      'DetectionMasks_Recall/AR@100 (small)': average recall for small objects
        with 100 detections.
      'DetectionMasks_Recall/AR@100 (medium)': average recall for medium objects
        with 100 detections.
      'DetectionMasks_Recall/AR@100 (large)': average recall for large objects
        with 100 detections.
1070

1071
1072
      2. per_category_ap: if include_metrics_per_category is True, category
      specific results with keys of the form:
1073
1074
1075
1076
1077
1078
1079
1080
1081
      'Precision mAP ByCategory/category' (without the supercategory part if
      no supercategories exist). For backward compatibility
      'PerformanceByCategory' is included in the output regardless of
      all_metrics_per_category.
    """
    groundtruth_dict = {
        'annotations': self._groundtruth_list,
        'images': [{'id': image_id, 'height': shape[1], 'width': shape[2]}
                   for image_id, shape in self._image_id_to_mask_shape_map.
1082
                   items()],
1083
1084
1085
1086
1087
1088
1089
1090
1091
        'categories': self._categories
    }
    coco_wrapped_groundtruth = coco_tools.COCOWrapper(
        groundtruth_dict, detection_type='segmentation')
    coco_wrapped_detection_masks = coco_wrapped_groundtruth.LoadAnnotations(
        self._detection_masks_list)
    mask_evaluator = coco_tools.COCOEvalWrapper(
        coco_wrapped_groundtruth, coco_wrapped_detection_masks,
        agnostic_mode=False, iou_type='segm')
1092
1093
    mask_metrics, mask_per_category_ap = mask_evaluator.ComputeMetrics(
        include_metrics_per_category=self._include_metrics_per_category)
1094
1095
    mask_metrics.update(mask_per_category_ap)
    mask_metrics = {'DetectionMasks_'+ key: value
1096
                    for key, value in mask_metrics.items()}
1097
    return mask_metrics
1098

1099
1100
  def add_eval_dict(self, eval_dict):
    """Observes an evaluation result dict for a single example.
1101

1102
1103
1104
1105
1106
    When executing eagerly, once all observations have been observed by this
    method you can use `.evaluate()` to get the final metrics.

    When using `tf.estimator.Estimator` for evaluation this function is used by
    `get_estimator_eval_metric_ops()` to construct the metric update op.
1107
1108

    Args:
1109
1110
1111
      eval_dict: A dictionary that holds tensors for evaluating an object
        detection model, returned from
        eval_util.result_dict_for_single_example().
1112
1113

    Returns:
1114
1115
      None when executing eagerly, or an update_op that can be used to update
      the eval metrics in `tf.estimator.EstimatorSpec`.
1116
    """
1117
1118
1119
1120
1121
1122
    def update_op(image_id_batched, groundtruth_boxes_batched,
                  groundtruth_classes_batched,
                  groundtruth_instance_masks_batched,
                  groundtruth_is_crowd_batched, num_gt_boxes_per_image,
                  detection_scores_batched, detection_classes_batched,
                  detection_masks_batched, num_det_boxes_per_image):
1123
      """Update op for metrics."""
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

      for (image_id, groundtruth_boxes, groundtruth_classes,
           groundtruth_instance_masks, groundtruth_is_crowd, num_gt_box,
           detection_scores, detection_classes,
           detection_masks, num_det_box) in zip(
               image_id_batched, groundtruth_boxes_batched,
               groundtruth_classes_batched, groundtruth_instance_masks_batched,
               groundtruth_is_crowd_batched, num_gt_boxes_per_image,
               detection_scores_batched, detection_classes_batched,
               detection_masks_batched, num_det_boxes_per_image):
        self.add_single_ground_truth_image_info(
            image_id, {
                'groundtruth_boxes':
                    groundtruth_boxes[:num_gt_box],
                'groundtruth_classes':
                    groundtruth_classes[:num_gt_box],
                'groundtruth_instance_masks':
                    groundtruth_instance_masks[:num_gt_box],
                'groundtruth_is_crowd':
                    groundtruth_is_crowd[:num_gt_box]
            })
        self.add_single_detected_image_info(
            image_id, {
                'detection_scores': detection_scores[:num_det_box],
                'detection_classes': detection_classes[:num_det_box],
                'detection_masks': detection_masks[:num_det_box]
            })
1151

1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
    # Unpack items from the evaluation dictionary.
    input_data_fields = standard_fields.InputDataFields
    detection_fields = standard_fields.DetectionResultFields
    image_id = eval_dict[input_data_fields.key]
    groundtruth_boxes = eval_dict[input_data_fields.groundtruth_boxes]
    groundtruth_classes = eval_dict[input_data_fields.groundtruth_classes]
    groundtruth_instance_masks = eval_dict[
        input_data_fields.groundtruth_instance_masks]
    groundtruth_is_crowd = eval_dict.get(
        input_data_fields.groundtruth_is_crowd, None)
1162
1163
    num_gt_boxes_per_image = eval_dict.get(
        input_data_fields.num_groundtruth_boxes, None)
1164
1165
1166
    detection_scores = eval_dict[detection_fields.detection_scores]
    detection_classes = eval_dict[detection_fields.detection_classes]
    detection_masks = eval_dict[detection_fields.detection_masks]
1167
1168
    num_det_boxes_per_image = eval_dict.get(detection_fields.num_detections,
                                            None)
1169

1170
1171
    if groundtruth_is_crowd is None:
      groundtruth_is_crowd = tf.zeros_like(groundtruth_classes, dtype=tf.bool)
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202

    if not image_id.shape.as_list():
      # Apply a batch dimension to all tensors.
      image_id = tf.expand_dims(image_id, 0)
      groundtruth_boxes = tf.expand_dims(groundtruth_boxes, 0)
      groundtruth_classes = tf.expand_dims(groundtruth_classes, 0)
      groundtruth_instance_masks = tf.expand_dims(groundtruth_instance_masks, 0)
      groundtruth_is_crowd = tf.expand_dims(groundtruth_is_crowd, 0)
      detection_scores = tf.expand_dims(detection_scores, 0)
      detection_classes = tf.expand_dims(detection_classes, 0)
      detection_masks = tf.expand_dims(detection_masks, 0)

      if num_gt_boxes_per_image is None:
        num_gt_boxes_per_image = tf.shape(groundtruth_boxes)[1:2]
      else:
        num_gt_boxes_per_image = tf.expand_dims(num_gt_boxes_per_image, 0)

      if num_det_boxes_per_image is None:
        num_det_boxes_per_image = tf.shape(detection_scores)[1:2]
      else:
        num_det_boxes_per_image = tf.expand_dims(num_det_boxes_per_image, 0)
    else:
      if num_gt_boxes_per_image is None:
        num_gt_boxes_per_image = tf.tile(
            tf.shape(groundtruth_boxes)[1:2],
            multiples=tf.shape(groundtruth_boxes)[0:1])
      if num_det_boxes_per_image is None:
        num_det_boxes_per_image = tf.tile(
            tf.shape(detection_scores)[1:2],
            multiples=tf.shape(detection_scores)[0:1])

1203
    return tf.py_func(update_op, [
1204
1205
1206
1207
1208
1209
        image_id, groundtruth_boxes, groundtruth_classes,
        groundtruth_instance_masks, groundtruth_is_crowd,
        num_gt_boxes_per_image, detection_scores, detection_classes,
        detection_masks, num_det_boxes_per_image
    ], [])

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
  def get_estimator_eval_metric_ops(self, eval_dict):
    """Returns a dictionary of eval metric ops.

    Note that once value_op is called, the detections and groundtruth added via
    update_op are cleared.

    Args:
      eval_dict: A dictionary that holds tensors for evaluating object detection
        performance. For single-image evaluation, this dictionary may be
        produced from eval_util.result_dict_for_single_example(). If multi-image
        evaluation, `eval_dict` should contain the fields
        'num_groundtruth_boxes_per_image' and 'num_det_boxes_per_image' to
        properly unpad the tensors from the batch.

    Returns:
      a dictionary of metric names to tuple of value_op and update_op that can
      be used as eval metric ops in tf.estimator.EstimatorSpec. Note that all
      update ops  must be run together and similarly all value ops must be run
      together to guarantee correct behaviour.
    """
    update_op = self.add_eval_dict(eval_dict)
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
    metric_names = ['DetectionMasks_Precision/mAP',
                    'DetectionMasks_Precision/mAP@.50IOU',
                    'DetectionMasks_Precision/mAP@.75IOU',
                    'DetectionMasks_Precision/mAP (large)',
                    'DetectionMasks_Precision/mAP (medium)',
                    'DetectionMasks_Precision/mAP (small)',
                    'DetectionMasks_Recall/AR@1',
                    'DetectionMasks_Recall/AR@10',
                    'DetectionMasks_Recall/AR@100',
                    'DetectionMasks_Recall/AR@100 (large)',
                    'DetectionMasks_Recall/AR@100 (medium)',
                    'DetectionMasks_Recall/AR@100 (small)']
    if self._include_metrics_per_category:
      for category_dict in self._categories:
        metric_names.append('DetectionMasks_PerformanceByCategory/mAP/' +
                            category_dict['name'])

    def first_value_func():
      self._metrics = self.evaluate()
      self.clear()
      return np.float32(self._metrics[metric_names[0]])

    def value_func_factory(metric_name):
      def value_func():
        return np.float32(self._metrics[metric_name])
      return value_func

    # Ensure that the metrics are only evaluated once.
    first_value_op = tf.py_func(first_value_func, [], tf.float32)
    eval_metric_ops = {metric_names[0]: (first_value_op, update_op)}
    with tf.control_dependencies([first_value_op]):
      for metric_name in metric_names[1:]:
        eval_metric_ops[metric_name] = (tf.py_func(
            value_func_factory(metric_name), [], np.float32), update_op)
    return eval_metric_ops