data_preprocessing.py 10.1 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
16
17
18
"""Preprocess dataset and construct any necessary artifacts."""

from __future__ import absolute_import
from __future__ import division
19
# from __future__ import google_type_annotations
20
21
22
23
24
25
from __future__ import print_function

import os
import pickle
import time
import timeit
26
27
import typing
from typing import Dict, Text, Tuple
Hongkun Yu's avatar
Hongkun Yu committed
28

29
from absl import logging
30
31
32
33
34
import numpy as np
import pandas as pd
import tensorflow as tf

from official.recommendation import constants as rconst
35
from official.recommendation import data_pipeline
36
from official.recommendation import movielens
37

38

Hongkun Yu's avatar
Hongkun Yu committed
39
40
41
_EXPECTED_CACHE_KEYS = (rconst.TRAIN_USER_KEY, rconst.TRAIN_ITEM_KEY,
                        rconst.EVAL_USER_KEY, rconst.EVAL_ITEM_KEY,
                        rconst.USER_MAP, rconst.ITEM_MAP)
42
43


44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
def read_dataframe(
    raw_rating_path: Text
) -> Tuple[Dict[int, int], Dict[int, int], pd.DataFrame]:
  """Read in data CSV, and output DataFrame for downstream processing.

  This function reads in the raw CSV of positive items, and performs three
  preprocessing transformations:

  1)  Filter out all users who have not rated at least a certain number
      of items. (Typically 20 items)

  2)  Zero index the users and items such that the largest user_id is
      `num_users - 1` and the largest item_id is `num_items - 1`

  3)  Sort the dataframe by user_id, with timestamp as a secondary sort key.
      This allows the dataframe to be sliced by user in-place, and for the last
      item to be selected simply by calling the `-1` index of a user's slice.

  Args:
    raw_rating_path: The path to the CSV which contains the raw dataset.

  Returns:
    A dict mapping raw user IDs to regularized user IDs, a dict mapping raw
    item IDs to regularized item IDs, and a filtered, zero-index remapped,
    sorted dataframe.
  """
  with tf.io.gfile.GFile(raw_rating_path) as f:
    df = pd.read_csv(f)

  # Get the info of users who have more than 20 ratings on items
  grouped = df.groupby(movielens.USER_COLUMN)
  df = grouped.filter(
      lambda x: len(x) >= rconst.MIN_NUM_RATINGS)  # type: pd.DataFrame

  original_users = df[movielens.USER_COLUMN].unique()
  original_items = df[movielens.ITEM_COLUMN].unique()

  # Map the ids of user and item to 0 based index for following processing
  logging.info("Generating user_map and item_map...")
  user_map = {user: index for index, user in enumerate(original_users)}
  item_map = {item: index for index, item in enumerate(original_items)}

  df[movielens.USER_COLUMN] = df[movielens.USER_COLUMN].apply(
      lambda user: user_map[user])
  df[movielens.ITEM_COLUMN] = df[movielens.ITEM_COLUMN].apply(
      lambda item: item_map[item])

  num_users = len(original_users)
  num_items = len(original_items)

  assert num_users <= np.iinfo(rconst.USER_DTYPE).max
  assert num_items <= np.iinfo(rconst.ITEM_DTYPE).max
  assert df[movielens.USER_COLUMN].max() == num_users - 1
  assert df[movielens.ITEM_COLUMN].max() == num_items - 1

  # This sort is used to shard the dataframe by user, and later to select
  # the last item for a user to be used in validation.
  logging.info("Sorting by user, timestamp...")

  # This sort is equivalent to
  #   df.sort_values([movielens.USER_COLUMN, movielens.TIMESTAMP_COLUMN],
  #   inplace=True)
  # except that the order of items with the same user and timestamp are
  # sometimes different. For some reason, this sort results in a better
  # hit-rate during evaluation, matching the performance of the MLPerf
  # reference implementation.
  df.sort_values(by=movielens.TIMESTAMP_COLUMN, inplace=True)
  df.sort_values([movielens.USER_COLUMN, movielens.TIMESTAMP_COLUMN],
                 inplace=True,
                 kind="mergesort")

  # The dataframe does not reconstruct indices in the sort or filter steps.
  return user_map, item_map, df.reset_index()


def _filter_index_sort(raw_rating_path: Text,
                       cache_path: Text) -> Tuple[pd.DataFrame, bool]:
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
  """Read in data CSV, and output structured data.

  This function reads in the raw CSV of positive items, and performs three
  preprocessing transformations:

  1)  Filter out all users who have not rated at least a certain number
      of items. (Typically 20 items)

  2)  Zero index the users and items such that the largest user_id is
      `num_users - 1` and the largest item_id is `num_items - 1`

  3)  Sort the dataframe by user_id, with timestamp as a secondary sort key.
      This allows the dataframe to be sliced by user in-place, and for the last
      item to be selected simply by calling the `-1` index of a user's slice.

  While all of these transformations are performed by Pandas (and are therefore
  single-threaded), they only take ~2 minutes, and the overhead to apply a
  MapReduce pattern to parallel process the dataset adds significant complexity
  for no computational gain. For a larger dataset parallelizing this
  preprocessing could yield speedups. (Also, this preprocessing step is only
  performed once for an entire run.

  Args:
    raw_rating_path: The path to the CSV which contains the raw dataset.
145
    cache_path: The path to the file where results of this function are saved.
146
147

  Returns:
Reed's avatar
Reed committed
148
149
150
    A filtered, zero-index remapped, sorted dataframe, a dict mapping raw user
    IDs to regularized user IDs, and a dict mapping raw item IDs to regularized
    item IDs.
151
  """
152
  valid_cache = tf.io.gfile.exists(cache_path)
153
  if valid_cache:
154
    with tf.io.gfile.GFile(cache_path, "rb") as f:
155
      cached_data = pickle.load(f)
156

157
158
159
160
    # (nnigania)disabled this check as the dataset is not expected to change
    # cache_age = time.time() - cached_data.get("create_time", 0)
    # if cache_age > rconst.CACHE_INVALIDATION_SEC:
    #   valid_cache = False
161

162
163
164
    for key in _EXPECTED_CACHE_KEYS:
      if key not in cached_data:
        valid_cache = False
165

166
    if not valid_cache:
167
168
      logging.info("Removing stale raw data cache file.")
      tf.io.gfile.remove(cache_path)
169

170
171
172
  if valid_cache:
    data = cached_data
  else:
173
    user_map, item_map, df = read_dataframe(raw_rating_path)
174
175
176
177
178

    grouped = df.groupby(movielens.USER_COLUMN, group_keys=False)
    eval_df, train_df = grouped.tail(1), grouped.apply(lambda x: x.iloc[:-1])

    data = {
Hongkun Yu's avatar
Hongkun Yu committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        rconst.TRAIN_USER_KEY:
            train_df[movielens.USER_COLUMN].values.astype(rconst.USER_DTYPE),
        rconst.TRAIN_ITEM_KEY:
            train_df[movielens.ITEM_COLUMN].values.astype(rconst.ITEM_DTYPE),
        rconst.EVAL_USER_KEY:
            eval_df[movielens.USER_COLUMN].values.astype(rconst.USER_DTYPE),
        rconst.EVAL_ITEM_KEY:
            eval_df[movielens.ITEM_COLUMN].values.astype(rconst.ITEM_DTYPE),
        rconst.USER_MAP:
            user_map,
        rconst.ITEM_MAP:
            item_map,
        "create_time":
            time.time(),
193
194
    }

195
196
    logging.info("Writing raw data cache.")
    with tf.io.gfile.GFile(cache_path, "wb") as f:
197
      pickle.dump(data, f, protocol=4)
198
199
200
201
202

  # TODO(robieta): MLPerf cache clear.
  return data, valid_cache


203
204
205
206
207
208
209
210
def instantiate_pipeline(dataset,
                         data_dir,
                         params,
                         constructor_type=None,
                         deterministic=False,
                         epoch_dir=None,
                         generate_data_offline=False):
  # type: (str, str, dict, typing.Optional[str], bool, typing.Optional[str], bool) -> (int, int, data_pipeline.BaseDataConstructor)
211
212
213
214
215
  """Load and digest data CSV into a usable form.

  Args:
    dataset: The name of the dataset to be used.
    data_dir: The root directory of the dataset.
Taylor Robie's avatar
Taylor Robie committed
216
    params: dict of parameters for the run.
217
218
219
    constructor_type: The name of the constructor subclass that should be used
      for the input pipeline.
    deterministic: Tell the data constructor to produce deterministically.
220
    epoch_dir: Directory in which to store the training epochs.
Hongkun Yu's avatar
Hongkun Yu committed
221
222
    generate_data_offline: Boolean, whether current pipeline is done offline or
      while training.
223
  """
224
  logging.info("Beginning data preprocessing.")
225
226
227

  st = timeit.default_timer()
  raw_rating_path = os.path.join(data_dir, dataset, movielens.RATINGS_FILE)
228
229
  cache_path = os.path.join(data_dir, dataset, rconst.RAW_CACHE_FILE)

Taylor Robie's avatar
Taylor Robie committed
230
  raw_data, _ = _filter_index_sort(raw_rating_path, cache_path)
231
  user_map, item_map = raw_data["user_map"], raw_data["item_map"]
232
  num_users, num_items = movielens.DATASET_TO_NUM_USERS_AND_ITEMS[dataset]
233
234
235
236
237
238
239

  if num_users != len(user_map):
    raise ValueError("Expected to find {} users, but found {}".format(
        num_users, len(user_map)))
  if num_items != len(item_map):
    raise ValueError("Expected to find {} items, but found {}".format(
        num_items, len(item_map)))
240

241
  producer = data_pipeline.get_constructor(constructor_type or "materialized")(
242
243
244
245
246
247
248
249
250
251
252
253
254
255
      maximum_number_epochs=params["train_epochs"],
      num_users=num_users,
      num_items=num_items,
      user_map=user_map,
      item_map=item_map,
      train_pos_users=raw_data[rconst.TRAIN_USER_KEY],
      train_pos_items=raw_data[rconst.TRAIN_ITEM_KEY],
      train_batch_size=params["batch_size"],
      batches_per_train_step=params["batches_per_step"],
      num_train_negatives=params["num_neg"],
      eval_pos_users=raw_data[rconst.EVAL_USER_KEY],
      eval_pos_items=raw_data[rconst.EVAL_ITEM_KEY],
      eval_batch_size=params["eval_batch_size"],
      batches_per_eval_step=params["batches_per_step"],
256
      stream_files=params["stream_files"],
257
      deterministic=deterministic,
258
259
      epoch_dir=epoch_dir,
      create_data_offline=generate_data_offline)
260
261

  run_time = timeit.default_timer() - st
Hongkun Yu's avatar
Hongkun Yu committed
262
263
  logging.info(
      "Data preprocessing complete. Time: {:.1f} sec.".format(run_time))
264

265
266
  print(producer)
  return num_users, num_items, producer