evaluator.py 5.75 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Multitask Evaluator implementation.

The evaluator implements the Orbit `AbstractEvaluator` interface.
"""
19
from typing import Dict, List, Optional, Union
Hongkun Yu's avatar
Hongkun Yu committed
20
21
22
23
import gin
import orbit
import tensorflow as tf

24
from official.core import base_task
25
from official.core import train_utils
Hongkun Yu's avatar
Hongkun Yu committed
26
27
28
29
30
31
32
from official.modeling.multitask import base_model


@gin.configurable
class MultiTaskEvaluator(orbit.AbstractEvaluator):
  """Implements the common trainer shared for TensorFlow models."""

33
34
  def __init__(
      self,
35
      eval_tasks: List[base_task.Task],
36
37
      model: Union[tf.keras.Model, base_model.MultiTaskBaseModel],
      global_step: Optional[tf.Variable] = None,
38
      eval_steps: Optional[Dict[str, int]] = None,
39
      checkpoint_exporter: Optional[train_utils.BestCheckpointExporter] = None):
Hongkun Yu's avatar
Hongkun Yu committed
40
41
42
    """Initialize common trainer for TensorFlow models.

    Args:
43
      eval_tasks: A list of tasks to evaluate.
Hongkun Yu's avatar
Hongkun Yu committed
44
45
      model: tf.keras.Model instance.
      global_step: the global step variable.
46
      eval_steps: a dictionary of steps to run eval keyed by task names.
47
48
      checkpoint_exporter: an object that has the `maybe_export_checkpoint`
        interface.
Hongkun Yu's avatar
Hongkun Yu committed
49
50
51
52
    """
    # Gets the current distribution strategy. If not inside any strategy scope,
    # it gets a single-replica no-op strategy.
    self._strategy = tf.distribute.get_strategy()
53
    self._tasks = eval_tasks
Hongkun Yu's avatar
Hongkun Yu committed
54
55
    self._model = model
    self._global_step = global_step or orbit.utils.create_global_step()
56
    self._checkpoint_exporter = checkpoint_exporter
Hongkun Yu's avatar
Hongkun Yu committed
57
    self._checkpoint = tf.train.Checkpoint(
58
        global_step=self.global_step, model=self.model)
Hongkun Yu's avatar
Hongkun Yu committed
59
60
61
62
63
64

    self._validation_losses = None
    self._validation_metrics = None

    # Builds per-task datasets.
    self.eval_datasets = {}
65
66
67
    self.eval_steps = eval_steps or {}
    for task in self.tasks:
      self.eval_datasets[task.name] = orbit.utils.make_distributed_dataset(
Hongkun Yu's avatar
Hongkun Yu committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
          self.strategy, task.build_inputs, task.task_config.validation_data)

    # Builds per-task validation loops.
    def get_function(task_name, task):

      task_metrics = self.validation_metrics[task_name]
      task_loss = self.validation_losses[task_name]
      if isinstance(self.model, base_model.MultiTaskBaseModel):
        model = self.model.sub_tasks[task_name]
      else:
        model = self.model

      def step_fn(inputs):
        logs = task.validation_step(inputs, model=model, metrics=task_metrics)
        task_loss.update_state(logs[task.loss])
        return logs

      @tf.function
      def eval_step_fn(iterator):
        distributed_outputs = self.strategy.run(step_fn, args=(next(iterator),))
        return tf.nest.map_structure(self.strategy.experimental_local_results,
                                     distributed_outputs)

      return orbit.utils.create_loop_fn(eval_step_fn)

    self.task_fns = {
94
        task.name: get_function(task.name, task) for task in self.tasks
Hongkun Yu's avatar
Hongkun Yu committed
95
96
97
98
99
100
101
    }

  @property
  def strategy(self):
    return self._strategy

  @property
102
103
  def tasks(self):
    return self._tasks
Hongkun Yu's avatar
Hongkun Yu committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

  @property
  def model(self):
    return self._model

  @property
  def global_step(self):
    return self._global_step

  @property
  def validation_losses(self):
    """Accesses the validation loss metric object."""
    if self._validation_losses is None:
      # Builds the per-task metrics and losses.
      self._validation_losses = {}
119
120
      for task in self.tasks:
        self._validation_losses[task.name] = tf.keras.metrics.Mean(
Hongkun Yu's avatar
Hongkun Yu committed
121
122
123
124
125
126
127
128
129
            "validation_loss", dtype=tf.float32)
    return self._validation_losses

  @property
  def validation_metrics(self):
    """Accesses all validation metric metric objects."""
    if self._validation_metrics is None:
      # Builds the per-task metrics and losses.
      self._validation_metrics = {}
130
131
      for task in self.tasks:
        self._validation_metrics[task.name] = task.build_metrics(training=False)
Hongkun Yu's avatar
Hongkun Yu committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    return self._validation_metrics

  @property
  def checkpoint(self):
    """Accesses the training checkpoint."""
    return self._checkpoint

  def evaluate(self, num_steps: tf.Tensor):
    """Performs evaluation for each `EvalTask`."""
    for metric in self.validation_losses.values():
      metric.reset_states()
    for metrics in self.validation_metrics.values():
      for metric in metrics:
        metric.reset_states()
    results = {}
    eval_iters = tf.nest.map_structure(iter, self.eval_datasets)

149
    for task in self.tasks:
Hongkun Yu's avatar
Hongkun Yu committed
150
      outputs = None
151
      name = task.name
Hongkun Yu's avatar
Hongkun Yu committed
152
      eval_iter = eval_iters[name]
153
154
      task_eval_steps = self.eval_steps.get(name, None) or num_steps
      outputs = self.task_fns[name](
Hongkun Yu's avatar
Hongkun Yu committed
155
156
157
158
159
160
161
162
163
164
          eval_iter,
          task_eval_steps,
          state=outputs,
          reduce_fn=task.aggregate_logs)
      task_metrics = self.validation_metrics[name]
      task_loss = self.validation_losses[name]
      logs = {}
      for metric in task_metrics + [task_loss]:
        logs[metric.name] = metric.result()
      if outputs:
165
166
        metrics = task.reduce_aggregated_logs(
            outputs, global_step=self.global_step)
Hongkun Yu's avatar
Hongkun Yu committed
167
168
        logs.update(metrics)
      results[name] = logs
169
170
171
172

    if self._checkpoint_exporter:
      self._checkpoint_exporter.maybe_export_checkpoint(
          self.checkpoint, results, self.global_step.numpy())
Hongkun Yu's avatar
Hongkun Yu committed
173
    return results