train_lib.py 9.48 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Multitask training driver library."""
# pytype: disable=attribute-error
import os
18
from typing import List, Optional
Hongkun Yu's avatar
Hongkun Yu committed
19
20
21
22
23
from absl import logging
import orbit
import tensorflow as tf
from official.core import base_task
from official.core import base_trainer as core_lib
24
from official.core import train_utils
25
26
from official.modeling.multitask import base_model
from official.modeling.multitask import base_trainer
Hongkun Yu's avatar
Hongkun Yu committed
27
28
from official.modeling.multitask import configs
from official.modeling.multitask import evaluator as evaluator_lib
29
from official.modeling.multitask import interleaving_trainer
Hongkun Yu's avatar
Hongkun Yu committed
30
from official.modeling.multitask import multitask
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from official.modeling.multitask import task_sampler

TRAINERS = {
    'interleaving': interleaving_trainer.MultiTaskInterleavingTrainer,
    'joint': base_trainer.MultiTaskBaseTrainer
}


def run_experiment(*, distribution_strategy: tf.distribute.Strategy,
                   task: multitask.MultiTask,
                   model: base_model.MultiTaskBaseModel, mode: str,
                   params: configs.MultiTaskExperimentConfig,
                   model_dir: str) -> base_model.MultiTaskBaseModel:
  """Runs train/eval configured by the experiment params.

  Args:
    distribution_strategy: A distribution distribution_strategy.
    task: A MultiTaskTask instance.
    model: A MultiTaskBaseModel instance.
    mode: A 'str', specifying the mode. Can be 'train', 'eval', 'train_and_eval'
      or 'continuous_eval'.
    params: ExperimentConfig instance.
    model_dir: A 'str', a path to store model checkpoints and summaries.

  Returns:
      model: `base_model.MultiTaskBaseModel` instance.
  """

  is_training = 'train' in mode
  is_eval = 'eval' in mode
  with distribution_strategy.scope():
    optimizer = task.create_optimizer(params.trainer.optimizer_config,
                                      params.runtime)
    kwargs = dict(multi_task=task, multi_task_model=model, optimizer=optimizer)
    if params.trainer.trainer_type == 'interleaving':
      sampler = task_sampler.get_task_sampler(params.trainer.task_sampler,
                                              task.task_weights)
      kwargs.update(dict(task_sampler=sampler))
    trainer = TRAINERS[params.trainer.trainer_type](
        **kwargs) if is_training else None
    if is_eval:
72
      eval_steps = task.task_eval_steps
73
      evaluator = evaluator_lib.MultiTaskEvaluator(
74
          eval_tasks=task.tasks.values(),
75
          model=model,
76
          eval_steps=eval_steps,
Tianqi Liu's avatar
Tianqi Liu committed
77
78
79
          global_step=trainer.global_step if is_training else None,
          checkpoint_exporter=train_utils.maybe_create_best_ckpt_exporter(
              params, model_dir))
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    else:
      evaluator = None

  if trainer:
    checkpoint = trainer.checkpoint
    global_step = trainer.global_step
  else:
    checkpoint = evaluator.checkpoint
    global_step = evaluator.global_step

  # TODO(hongkuny,haozhangthu): Revisit initialization method.
  checkpoint_manager = tf.train.CheckpointManager(
      checkpoint,
      directory=model_dir,
      max_to_keep=params.trainer.max_to_keep,
      step_counter=global_step,
      checkpoint_interval=params.trainer.checkpoint_interval,
      init_fn=model.initialize)

  controller = orbit.Controller(
      strategy=distribution_strategy,
      trainer=trainer,
      evaluator=evaluator,
      global_step=global_step,
      steps_per_loop=params.trainer.steps_per_loop,
      checkpoint_manager=checkpoint_manager,
      summary_dir=os.path.join(model_dir, 'train'),
      eval_summary_dir=os.path.join(model_dir, 'validation'),
      summary_interval=params.trainer.summary_interval)

  logging.info('Starts to execute mode: %s', mode)
  with distribution_strategy.scope():
    if mode == 'train':
      controller.train(steps=params.trainer.train_steps)
    elif mode == 'train_and_eval':
      controller.train_and_evaluate(
          train_steps=params.trainer.train_steps,
          eval_steps=params.trainer.validation_steps,
          eval_interval=params.trainer.validation_interval)
    elif mode == 'eval':
      controller.evaluate(steps=params.trainer.validation_steps)
    elif mode == 'continuous_eval':

      def timeout_fn():
        if evaluator.global_step.numpy() >= params.trainer.train_steps:
          return True
        return False

      controller.evaluate_continuously(
          steps=params.trainer.validation_steps,
          timeout=params.trainer.continuous_eval_timeout,
          timeout_fn=timeout_fn)
    else:
      raise NotImplementedError('The mode is not implemented: %s' % mode)

    return model
Hongkun Yu's avatar
Hongkun Yu committed
136
137


138
def run_experiment_with_multitask_eval(
Hongkun Yu's avatar
Hongkun Yu committed
139
    *,
Hongkun Yu's avatar
Hongkun Yu committed
140
141
    distribution_strategy: tf.distribute.Strategy,
    train_task: base_task.Task,
142
    eval_tasks: List[base_task.Task],
Hongkun Yu's avatar
Hongkun Yu committed
143
    mode: str,
Hongkun Yu's avatar
Hongkun Yu committed
144
    params: configs.MultiEvalExperimentConfig,
Hongkun Yu's avatar
Hongkun Yu committed
145
146
    model_dir: str,
    run_post_eval: bool = False,
Le Hou's avatar
Le Hou committed
147
148
    save_summary: bool = True,
    trainer: Optional[core_lib.Trainer] = None) -> tf.keras.Model:
Hongkun Yu's avatar
Hongkun Yu committed
149
150
151
152
153
  """Runs train/eval configured by the experiment params.

  Args:
    distribution_strategy: A distribution distribution_strategy.
    train_task: A base_task.Task instance.
154
    eval_tasks: A list of evaluation tasks.
Hongkun Yu's avatar
Hongkun Yu committed
155
156
157
158
    mode: A 'str', specifying the mode. Can be 'train', 'eval', 'train_and_eval'
      or 'continuous_eval'.
    params: MultiEvalExperimentConfig instance.
    model_dir: A 'str', a path to store model checkpoints and summaries.
Hongkun Yu's avatar
Hongkun Yu committed
159
160
161
    run_post_eval: Whether to run post eval once after training, metrics logs
      are returned.
    save_summary: Whether to save train and validation summary.
Le Hou's avatar
Le Hou committed
162
163
164
    trainer: the core_lib.Trainer instance. It should be created within the
      strategy.scope(). If not provided, an instance will be created by default
      if `mode` contains 'train'.
Hongkun Yu's avatar
Hongkun Yu committed
165
166
167
168
169
170
171
172
173

  Returns:
      model: `tf.keras.Model` instance.
  """

  is_training = 'train' in mode
  is_eval = 'eval' in mode
  with distribution_strategy.scope():
    if is_training:
Le Hou's avatar
Le Hou committed
174
      trainer = trainer or core_lib.Trainer(
Hongkun Yu's avatar
Hongkun Yu committed
175
176
          config=params,
          task=train_task,
Le Hou's avatar
Le Hou committed
177
          model=train_task.build_model(),
178
179
          optimizer=train_task.create_optimizer(params.trainer.optimizer_config,
                                                params.runtime),
Hongkun Yu's avatar
Hongkun Yu committed
180
181
182
183
          train=True,
          evaluate=False)
    else:
      trainer = None
Le Hou's avatar
Le Hou committed
184
185
    model = trainer.model if trainer else train_task.build_model()

Hongkun Yu's avatar
Hongkun Yu committed
186
    if is_eval:
187
188
189
      eval_steps = dict([(task_routine.task_config.name,
                          task_routine.eval_steps)
                         for task_routine in params.eval_tasks])
Hongkun Yu's avatar
Hongkun Yu committed
190
      evaluator = evaluator_lib.MultiTaskEvaluator(
191
          eval_tasks=eval_tasks,
Hongkun Yu's avatar
Hongkun Yu committed
192
          model=model,
193
          global_step=trainer.global_step if is_training else None,
194
          eval_steps=eval_steps,
195
196
          checkpoint_exporter=train_utils.maybe_create_best_ckpt_exporter(
              params, model_dir))
Hongkun Yu's avatar
Hongkun Yu committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    else:
      evaluator = None

  if trainer:
    checkpoint = trainer.checkpoint
    global_step = trainer.global_step
  else:
    checkpoint = evaluator.checkpoint
    global_step = evaluator.global_step

  checkpoint_manager = tf.train.CheckpointManager(
      checkpoint,
      directory=model_dir,
      max_to_keep=params.trainer.max_to_keep,
      step_counter=global_step,
      checkpoint_interval=params.trainer.checkpoint_interval,
      init_fn=trainer.initialize if trainer else None)

  controller = orbit.Controller(
      strategy=distribution_strategy,
      trainer=trainer,
      evaluator=evaluator,
      global_step=global_step,
      steps_per_loop=params.trainer.steps_per_loop,
      checkpoint_manager=checkpoint_manager,
Hongkun Yu's avatar
Hongkun Yu committed
222
223
224
225
226
      summary_dir=os.path.join(model_dir, 'train') if save_summary else None,
      eval_summary_dir=os.path.join(model_dir, 'validation') if
      (save_summary) else None,
      summary_interval=params.trainer.summary_interval if
      (save_summary) else None)
Hongkun Yu's avatar
Hongkun Yu committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

  logging.info('Starts to execute mode: %s', mode)
  with distribution_strategy.scope():
    if mode == 'train':
      controller.train(steps=params.trainer.train_steps)
    elif mode == 'train_and_eval':
      controller.train_and_evaluate(
          train_steps=params.trainer.train_steps,
          eval_steps=params.trainer.validation_steps,
          eval_interval=params.trainer.validation_interval)
    elif mode == 'eval':
      controller.evaluate(steps=params.trainer.validation_steps)
    elif mode == 'continuous_eval':

      def timeout_fn():
        if evaluator.global_step.numpy() >= params.trainer.train_steps:
          return True
        return False

      controller.evaluate_continuously(
          steps=params.trainer.validation_steps,
          timeout=params.trainer.continuous_eval_timeout,
          timeout_fn=timeout_fn)
    else:
      raise NotImplementedError('The mode is not implemented: %s' % mode)

Hongkun Yu's avatar
Hongkun Yu committed
253
254
    if run_post_eval:
      return model, evaluator.evaluate(
Rebecca Chen's avatar
Rebecca Chen committed
255
          tf.convert_to_tensor(params.trainer.validation_steps))  # pytype: disable=bad-return-type  # typed-keras
Hongkun Yu's avatar
Hongkun Yu committed
256
    else:
Rebecca Chen's avatar
Rebecca Chen committed
257
      return model, {}  # pytype: disable=bad-return-type  # typed-keras