model_training_utils.py 18.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""A light weight utilities to train NLP models."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import json
22
23
24
import os

from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
25
import tensorflow as tf
Zongwei Zhou's avatar
Zongwei Zhou committed
26
from official.staging.training import grad_utils
27
from official.utils.misc import distribution_utils
28

29
30
_SUMMARY_TXT = 'training_summary.txt'
_MIN_SUMMARY_STEPS = 10
31

32
33
34
35
36
37
38
39
40
41

def _save_checkpoint(checkpoint, model_dir, checkpoint_prefix):
  """Saves model to with provided checkpoint prefix."""

  checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
  saved_path = checkpoint.save(checkpoint_path)
  logging.info('Saving model as TF checkpoint: %s', saved_path)
  return


42
43
44
45
46
def _get_input_iterator(input_fn, strategy):
  """Returns distributed dataset iterator."""
  # When training with TPU pods, datasets needs to be cloned across
  # workers. Since Dataset instance cannot be cloned in eager mode, we instead
  # pass callable that returns a dataset.
Hongkun Yu's avatar
Hongkun Yu committed
47
48
49
50
  if not callable(input_fn):
    raise ValueError('`input_fn` should be a closure that returns a dataset.')
  iterator = iter(
      strategy.experimental_distribute_datasets_from_function(input_fn))
51
52
53
  return iterator


54
55
56
57
58
def _float_metric_value(metric):
  """Gets the value of a float-value keras metric."""
  return metric.result().numpy().astype(float)


59
def steps_to_run(current_step, steps_per_epoch, steps_per_loop):
60
  """Calculates steps to run on device."""
61
62
63
  if steps_per_loop <= 0:
    raise ValueError('steps_per_loop should be positive integer.')
  if steps_per_loop == 1:
64
65
66
67
68
69
70
71
    return steps_per_loop
  remainder_in_epoch = current_step % steps_per_epoch
  if remainder_in_epoch != 0:
    return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
  else:
    return steps_per_loop


72
def write_txt_summary(training_summary, summary_dir):
73
  """Writes a summary text file to record stats."""
74
  summary_path = os.path.join(summary_dir, _SUMMARY_TXT)
75
76
77
78
79
  with tf.io.gfile.GFile(summary_path, 'wb') as f:
    logging.info('Training Summary: \n%s', str(training_summary))
    f.write(json.dumps(training_summary, indent=4))


80
81
82
83
84
85
86
87
88
89
def run_customized_training_loop(
    # pylint: disable=invalid-name
    _sentinel=None,
    # pylint: enable=invalid-name
    strategy=None,
    model_fn=None,
    loss_fn=None,
    model_dir=None,
    train_input_fn=None,
    steps_per_epoch=None,
90
    steps_per_loop=1,
91
92
93
94
95
    epochs=1,
    eval_input_fn=None,
    eval_steps=None,
    metric_fn=None,
    init_checkpoint=None,
96
    custom_callbacks=None,
Chen Chen's avatar
Chen Chen committed
97
    run_eagerly=False,
Zongwei Zhou's avatar
Zongwei Zhou committed
98
99
100
101
    sub_model_export_name=None,
    explicit_allreduce=False,
    pre_allreduce_callbacks=None,
    post_allreduce_callbacks=None):
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
  """Run BERT pretrain model training using low-level API.

  Arguments:
      _sentinel: Used to prevent positional parameters. Internal, do not use.
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: Function that returns a tuple (model, sub_model). Caller of this
        function should add optimizer to the `model` via calling
        `model.compile()` API or manually setting `model.optimizer` attribute.
        Second element of the returned tuple(sub_model) is an optional sub model
        to be used for initial checkpoint -- if provided.
      loss_fn: Function with signature func(labels, logits) and returns a loss
        tensor.
      model_dir: Model directory used during training for restoring/saving model
        weights.
      train_input_fn: Function that returns a tf.data.Dataset used for training.
117
118
119
120
121
122
      steps_per_epoch: Number of steps to run per epoch. At the end of each
        epoch, model checkpoint will be saved and evaluation will be conducted
        if evaluation dataset is provided.
      steps_per_loop: Number of steps per graph-mode loop. In order to reduce
        communication in eager context, training logs are printed every
        steps_per_loop.
123
124
125
126
127
128
129
130
131
132
      epochs: Number of epochs to train.
      eval_input_fn: Function that returns evaluation dataset. If none,
        evaluation is skipped.
      eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
        is not none.
      metric_fn: A metrics function that returns a Keras Metric object to record
        evaluation result using evaluation dataset or with training dataset
        after every epoch.
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
133
      custom_callbacks: A list of Keras Callbacks objects to run during
134
        training. More specifically, `on_batch_begin()`, `on_batch_end()`,
135
        methods are invoked during training.
136
137
      run_eagerly: Whether to run model training in pure eager execution. This
        should be disable for TPUStrategy.
Chen Chen's avatar
Chen Chen committed
138
139
140
141
142
      sub_model_export_name: If not None, will export `sub_model` returned by
        `model_fn` into checkpoint files. The name of intermediate checkpoint
        file is {sub_model_export_name}_step_{step}.ckpt and the last
        checkpint's name is {sub_model_export_name}.ckpt;
        if None, `sub_model` will not be exported as checkpoint.
Zongwei Zhou's avatar
Zongwei Zhou committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
      explicit_allreduce: Whether to explicitly perform gradient allreduce,
        instead of relying on implicit allreduce in optimizer.apply_gradients().
        default is False. For now, if training using FP16 mixed precision,
        explicit allreduce will aggregate gradients in FP16 format. For TPU and
        GPU training using FP32, explicit allreduce will aggregate gradients in
        FP32 format.
      pre_allreduce_callbacks: A list of callback functions that takes gradients
        and model variables pairs as input, manipulate them, and returns a new
        gradients and model variables paris. The callback functions will be
        invoked in the list order and before gradients are allreduced.
        Default is no callbacks. Only used when explicit_allreduce=True.
      post_allreduce_callbacks: A list of callback functions that takes
        gradients and model variables pairs as input, manipulate them, and
        returns a new gradients and model variables paris. The callback
        functions will be invoked in the list order and right before gradients
        are applied to variables for updates. Default is no callbacks. Only used
        when explicit_allreduce=True.
160
161
162
163
164
165
166
167

  Returns:
      Trained model.

  Raises:
      ValueError: (1) When model returned by `model_fn` does not have optimizer
        attribute or when required parameters are set to none. (2) eval args are
        not specified correctly. (3) metric_fn must be a callable if specified.
Chen Chen's avatar
Chen Chen committed
168
169
        (4) sub_model_checkpoint_name is specified, but `sub_model` returned
        by `model_fn` is None.
170
171
172
173
174
175
176
177
178
179
180
  """

  if _sentinel is not None:
    raise ValueError('only call `run_customized_training_loop()` '
                     'with named arguments.')

  required_arguments = [
      strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
  ]
  if [arg for arg in required_arguments if arg is None]:
    raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
181
182
183
184
185
186
187
188
                     '`steps_per_loop` and `steps_per_epoch` are required '
                     'parameters.')
  if steps_per_loop > steps_per_epoch:
    logging.error(
        'steps_per_loop: %d is specified to be greater than '
        ' steps_per_epoch: %d, we will use steps_per_epoch as'
        ' steps_per_loop.', steps_per_loop, steps_per_epoch)
    steps_per_loop = steps_per_epoch
189
190
  assert tf.executing_eagerly()

191
192
193
194
195
196
  if run_eagerly:
    if isinstance(strategy, tf.distribute.experimental.TPUStrategy):
      raise ValueError(
          'TPUStrategy should not run eagerly as it heavily replies on graph'
          ' optimization for the distributed system.')

197
198
199
200
201
202
203
204
  if eval_input_fn and (eval_steps is None or metric_fn is None):
    raise ValueError(
        '`eval_step` and `metric_fn` are required when `eval_input_fn ` '
        'is not none.')
  if metric_fn and not callable(metric_fn):
    raise ValueError(
        'if `metric_fn` is specified, metric_fn must be a callable.')

205
206
  total_training_steps = steps_per_epoch * epochs

207
208
  # To reduce unnecessary send/receive input pipeline operation, we place input
  # pipeline ops in worker task.
209
210
211
212
213
214
215
216
217
  train_iterator = _get_input_iterator(train_input_fn, strategy)

  with distribution_utils.get_strategy_scope(strategy):
    # To correctly place the model weights on accelerators,
    # model and optimizer should be created in scope.
    model, sub_model = model_fn()
    if not hasattr(model, 'optimizer'):
      raise ValueError('User should set optimizer attribute to model '
                       'inside `model_fn`.')
Chen Chen's avatar
Chen Chen committed
218
219
220
221
    if sub_model_export_name and sub_model is None:
      raise ValueError('sub_model_export_name is specified as %s, but '
                       'sub_model is None.' % sub_model_export_name)

222
223
224
225
226
227
228
    optimizer = model.optimizer

    if init_checkpoint:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'initial checkpoint for core model.', init_checkpoint)
      checkpoint = tf.train.Checkpoint(model=sub_model)
Jing Li's avatar
Jing Li committed
229
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()
230
231
232
233
234
235
236
237
238
239
240
241
242
      logging.info('Loading from checkpoint file completed')

    train_loss_metric = tf.keras.metrics.Mean(
        'training_loss', dtype=tf.float32)
    eval_metrics = [metric_fn()] if metric_fn else []
    # If evaluation is required, make a copy of metric as it will be used by
    # both train and evaluation.
    train_metrics = [
        metric.__class__.from_config(metric.get_config())
        for metric in eval_metrics
    ]

    # Create summary writers
243
    summary_dir = os.path.join(model_dir, 'summaries')
244
    eval_summary_writer = tf.summary.create_file_writer(
245
        os.path.join(summary_dir, 'eval'))
246
247
248
249
    if steps_per_loop >= _MIN_SUMMARY_STEPS:
      # Only writes summary when the stats are collected sufficiently over
      # enough steps.
      train_summary_writer = tf.summary.create_file_writer(
250
          os.path.join(summary_dir, 'train'))
251
252
253
254
255
256
257
258
259
260
261
262
263
    else:
      train_summary_writer = None

    # Collects training variables.
    training_vars = model.trainable_variables

    def _replicated_step(inputs):
      """Replicated training step."""

      inputs, labels = inputs
      with tf.GradientTape() as tape:
        model_outputs = model(inputs, training=True)
        loss = loss_fn(labels, model_outputs)
Zongwei Zhou's avatar
Zongwei Zhou committed
264
265
266
267
268
      if explicit_allreduce:
        grad_utils.minimize_using_explicit_allreduce(tape, optimizer, loss,
                                                     training_vars,
                                                     pre_allreduce_callbacks,
                                                     post_allreduce_callbacks)
269
      else:
Zongwei Zhou's avatar
Zongwei Zhou committed
270
271
272
273
274
275
276
277
278
        if isinstance(optimizer,
                      tf.keras.mixed_precision.experimental.LossScaleOptimizer):
          with tape:
            scaled_loss = optimizer.get_scaled_loss(loss)
          scaled_grads = tape.gradient(scaled_loss, training_vars)
          grads = optimizer.get_unscaled_gradients(scaled_grads)
        else:
          grads = tape.gradient(loss, training_vars)
        optimizer.apply_gradients(zip(grads, training_vars))
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
      # For reporting, the metric takes the mean of losses.
      train_loss_metric.update_state(loss)
      for metric in train_metrics:
        metric.update_state(labels, model_outputs)

    @tf.function
    def train_steps(iterator, steps):
      """Performs distributed training steps in a loop.

      Args:
        iterator: the distributed iterator of training datasets.
        steps: an tf.int32 integer tensor to specify number of steps to run
          inside host training loop.

      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
      if not isinstance(steps, tf.Tensor):
        raise ValueError('steps should be an Tensor. Python object may cause '
                         'retracing.')

      for _ in tf.range(steps):
        strategy.experimental_run_v2(_replicated_step, args=(next(iterator),))
302

303
304
    def train_single_step(iterator):
      """Performs a distributed training step.
305

306
307
      Args:
        iterator: the distributed iterator of training datasets.
308

309
310
311
312
      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
      strategy.experimental_run_v2(_replicated_step, args=(next(iterator),))
313

314
315
    def test_step(iterator):
      """Calculates evaluation metrics on distributed devices."""
316

317
318
      def _test_step_fn(inputs):
        """Replicated accuracy calculation."""
319

320
321
322
323
        inputs, labels = inputs
        model_outputs = model(inputs, training=False)
        for metric in eval_metrics:
          metric.update_state(labels, model_outputs)
324

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
      strategy.experimental_run_v2(_test_step_fn, args=(next(iterator),))

    if not run_eagerly:
      train_single_step = tf.function(train_single_step)
      test_step = tf.function(test_step)

    def _run_evaluation(current_training_step, test_iterator):
      """Runs validation steps and aggregate metrics."""
      for _ in range(eval_steps):
        test_step(test_iterator)

      with eval_summary_writer.as_default():
        for metric in eval_metrics + model.metrics:
          metric_value = _float_metric_value(metric)
          logging.info('Step: [%d] Validation %s = %f', current_training_step,
                       metric.name, metric_value)
          tf.summary.scalar(
              metric.name, metric_value, step=current_training_step)
        eval_summary_writer.flush()

    def _run_callbacks_on_batch_begin(batch):
      """Runs custom callbacks at the start of every step."""
      if not custom_callbacks:
        return
      for callback in custom_callbacks:
        callback.on_batch_begin(batch)

352
    def _run_callbacks_on_batch_end(batch, logs):
353
354
355
356
      """Runs custom callbacks at the end of every step."""
      if not custom_callbacks:
        return
      for callback in custom_callbacks:
357
        callback.on_batch_end(batch, logs)
358
359
360

    # Training loop starts here.
    checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
Chen Chen's avatar
Chen Chen committed
361
362
363
    sub_model_checkpoint = tf.train.Checkpoint(
        model=sub_model) if sub_model_export_name else None

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
    if latest_checkpoint_file:
      logging.info(
          'Checkpoint file %s found and restoring from '
          'checkpoint', latest_checkpoint_file)
      checkpoint.restore(latest_checkpoint_file)
      logging.info('Loading from checkpoint file completed')

    current_step = optimizer.iterations.numpy()
    checkpoint_name = 'ctl_step_{step}.ckpt'

    while current_step < total_training_steps:
      # Training loss/metric are taking average over steps inside micro
      # training loop. We reset the their values before each round.
      train_loss_metric.reset_states()
      for metric in train_metrics + model.metrics:
        metric.reset_states()

      _run_callbacks_on_batch_begin(current_step)
      # Runs several steps in the host while loop.
384
      steps = steps_to_run(current_step, steps_per_epoch, steps_per_loop)
385

386
      if tf.test.is_built_with_cuda():
387
388
        # TODO(zongweiz): merge with train_steps once tf.while_loop
        # GPU performance bugs are fixed.
389
390
        for _ in range(steps):
          train_single_step(train_iterator)
391
392
393
394
      else:
        # Converts steps to a Tensor to avoid tf.function retracing.
        train_steps(train_iterator,
                    tf.convert_to_tensor(steps, dtype=tf.int32))
395
      train_loss = _float_metric_value(train_loss_metric)
396
      current_step += steps
397
      _run_callbacks_on_batch_end(current_step - 1, {'loss': train_loss})
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

      # Updates training logging.
      training_status = 'Train Step: %d/%d  / loss = %s' % (
          current_step, total_training_steps, train_loss)

      if train_summary_writer:
        with train_summary_writer.as_default():
          tf.summary.scalar(
              train_loss_metric.name, train_loss, step=current_step)
          for metric in train_metrics + model.metrics:
            metric_value = _float_metric_value(metric)
            training_status += '  %s = %f' % (metric.name, metric_value)
            tf.summary.scalar(metric.name, metric_value, step=current_step)
          train_summary_writer.flush()
      logging.info(training_status)

      # Saves model checkpoints and run validation steps at every epoch end.
      if current_step % steps_per_epoch == 0:
        # To avoid repeated model saving, we do not save after the last
        # step of training.
        if current_step < total_training_steps:
          _save_checkpoint(checkpoint, model_dir,
                           checkpoint_name.format(step=current_step))
Chen Chen's avatar
Chen Chen committed
421
422
423
424
          if sub_model_export_name:
            _save_checkpoint(
                sub_model_checkpoint, model_dir,
                '%s_step_%d.ckpt' % (sub_model_export_name, current_step))
425
426
427
428
429
430
431
        if eval_input_fn:
          logging.info('Running evaluation after step: %s.', current_step)
          _run_evaluation(current_step,
                          _get_input_iterator(eval_input_fn, strategy))
          # Re-initialize evaluation metric.
          for metric in eval_metrics + model.metrics:
            metric.reset_states()
432

433
434
    _save_checkpoint(checkpoint, model_dir,
                     checkpoint_name.format(step=current_step))
Chen Chen's avatar
Chen Chen committed
435
436
437
    if sub_model_export_name:
      _save_checkpoint(sub_model_checkpoint, model_dir,
                       '%s.ckpt' % sub_model_export_name)
438

439
440
441
442
    if eval_input_fn:
      logging.info('Running final evaluation after training is complete.')
      _run_evaluation(current_step,
                      _get_input_iterator(eval_input_fn, strategy))
443

444
445
446
447
448
449
450
451
452
    training_summary = {
        'total_training_steps': total_training_steps,
        'train_loss': _float_metric_value(train_loss_metric),
    }
    if eval_metrics:
      # TODO(hongkuny): Cleans up summary reporting in text.
      training_summary['last_train_metrics'] = _float_metric_value(
          train_metrics[0])
      training_summary['eval_metrics'] = _float_metric_value(eval_metrics[0])
453

454
    write_txt_summary(training_summary, summary_dir)
455

456
    return model