README.md 5.42 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
![Logo](https://storage.googleapis.com/model_garden_artifacts/TF_Model_Garden.png)
2

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
3
# TensorFlow Official Models
4

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
5
6
7
8
9
10
11
12
The TensorFlow official models are a collection of models
that use TensorFlow’s high-level APIs.
They are intended to be well-maintained, tested, and kept up to date
with the latest TensorFlow API.
They should also be reasonably optimized for fast performance while still
being easy to read.
These models are used as end-to-end tests, ensuring that the models run
with the same or improved speed and performance with each new TensorFlow build.
13

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
14
## Model Implementations
15

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
16
### Natural Language Processing
17

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
18
19
20
21
22
23
| Model | Description | Reference |
| ----- | ----------- | --------- |
| [ALBERT](nlp/albert) | A Lite BERT for Self-supervised Learning of Language Representations | [arXiv:1909.11942](https://arxiv.org/abs/1909.11942) |
| [BERT](nlp/bert) | A powerful pre-trained language representation model: BERT (Bidirectional Encoder Representations from Transformers) | [arXiv:1810.04805](https://arxiv.org/abs/1810.04805) |
| [Transformer](nlp/transformer) | A transformer model to translate the WMT English to German dataset | [arXiv:1706.03762](https://arxiv.org/abs/1706.03762) |
| [XLNet](nlp/xlnet) | XLNet: Generalized Autoregressive Pretraining for Language Understanding | [arXiv:1906.08237](https://arxiv.org/abs/1906.08237) |
Hongkun Yu's avatar
Hongkun Yu committed
24

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
25
### Computer Vision
Hongkun Yu's avatar
Hongkun Yu committed
26

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
28
29
30
31
| Model | Description | Reference |
| ----- | ----------- | --------- |
| [MNIST](vision/image_classification) | A basic model to classify digits from the MNIST dataset | [Link](http://yann.lecun.com/exdb/mnist/) |
| [ResNet](vision/image_classification) | A deep residual network for image recognition | [arXiv:1512.03385](https://arxiv.org/abs/1512.03385) |
| [RetinaNet](vision/detection) | A fast and powerful object detector | [arXiv:1708.02002](https://arxiv.org/abs/1708.02002) |
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
32
| [Mask R-CNN](vision/detection) | An object detection and instance segmentation model | [arXiv:1703.06870](https://arxiv.org/abs/1703.06870) |
33

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
34
### Other models
35

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
36
37
38
| Model | Description | Reference |
| ----- | ----------- | --------- |
| [NCF](recommendation) | Neural Collaborative Filtering model for recommendation tasks | [arXiv:1708.05031](https://arxiv.org/abs/1708.05031) |
39

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
40
---
41

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
42
## How to get started with the Model Garden official models
Hongkun Yu's avatar
Hongkun Yu committed
43

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
44
45
46
47
48
49
50
51
52
53
54
* The models in the master branch are developed using TensorFlow 2,
and they target the TensorFlow [nightly binaries](https://github.com/tensorflow/tensorflow#installation)
built from the
[master branch of TensorFlow](https://github.com/tensorflow/tensorflow/tree/master).
* The stable versions targeting releases of TensorFlow are available
as tagged branches or [downloadable releases](https://github.com/tensorflow/models/releases).
* Model repository version numbers match the target TensorFlow release,
such that
[release v2.1.0](https://github.com/tensorflow/models/releases/tag/v2.1.0)
are compatible with
[TensorFlow v2.1.0](https://github.com/tensorflow/tensorflow/releases/tag/v2.1.0).
Hongkun Yu's avatar
Hongkun Yu committed
55

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
56
Please follow the below steps before running models in this repository.
57

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
58
### Requirements
59

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
60
61
62
* The latest TensorFlow Model Garden release and TensorFlow 2
  * If you are on a version of TensorFlow earlier than 2.1, please
upgrade your TensorFlow to [the latest TensorFlow 2](https://www.tensorflow.org/install/).
Hongkun Yu's avatar
Hongkun Yu committed
63

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
64
65
66
```shell
pip3 install tf-nightly
```
Hongkun Yu's avatar
Hongkun Yu committed
67

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
68
### Installation
Hongkun Yu's avatar
Hongkun Yu committed
69

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
70
#### Method 1: Install the TensorFlow Model Garden pip package
Hongkun Yu's avatar
Hongkun Yu committed
71

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
72
73
74
**tf-models-nightly** is the nightly Model Garden package
created daily automatically. pip will install all models
and dependencies automatically.
75

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
77
78
```shell
pip install tf-models-nightly
```
79

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
80
81
Please check out our [example](colab/bert.ipynb)
to learn how to use a PIP package.
82

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
83
#### Method 2: Clone the source
84

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
85
1. Clone the GitHub repository:
86

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
87
88
89
```shell
git clone https://github.com/tensorflow/models.git
```
90

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
91
2. Add the top-level ***/models*** folder to the Python path.
92

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
93
94
95
```shell
export PYTHONPATH=$PYTHONPATH:/path/to/models
```
96

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
97
If you are using a Colab notebook, please set the Python path with os.environ.
98

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
99
100
101
102
```python
import os
os.environ['PYTHONPATH'] += ":/path/to/models"
```
103

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
104
3. Install other dependencies
105

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
106
107
108
```shell
pip3 install --user -r official/requirements.txt
```
Hongkun Yu's avatar
Hongkun Yu committed
109

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
110
---
Hongkun Yu's avatar
Hongkun Yu committed
111
112
113

## More models to come!

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
114
115
The team is actively developing new models.
In the near future, we will add:
Hongkun Yu's avatar
Hongkun Yu committed
116

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
117
118
119
120
121
- State-of-the-art language understanding models:
  More members in Transformer family
- Start-of-the-art image classification models:
  EfficientNet, MnasNet and variants.
- A set of excellent objection detection models.
Hongkun Yu's avatar
Hongkun Yu committed
122

Hongkun Yu's avatar
Hongkun Yu committed
123
124
If you would like to make any fixes or improvements to the models, please
[submit a pull request](https://github.com/tensorflow/models/compare).
125

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
126
127
128
---

## Contributions
129

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
130
131
Every model should follow our guidelines to uphold our objectives of readable,
usable, and maintainable code.
132

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
133
### General Guidelines
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
134

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
135
136
137
138
139
140
141
- Code should be well documented and tested.
- Runnable from a blank environment with ease.
- Trainable on: single GPU/CPU (baseline), multiple GPUs & TPUs
- Compatible with Python 3 (using [six](https://pythonhosted.org/six/)
when being compatible with Python 2 is necessary)
- Conform to
  [Google Python Style Guide](https://github.com/google/styleguide/blob/gh-pages/pyguide.md)
142

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
143
### Implementation Guidelines
144

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
145
146
These guidelines are to ensure consistent model implementations for
better readability and maintainability.
147

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
148
149
150
- Use [common utility functions](utils)
- Export SavedModel at the end of the training.
- Consistent flags and flag-parsing library ([read more here](utils/flags/guidelines.md))