eval.py 5.76 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Evaluates a TFGAN trained CIFAR model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

import data_provider
import networks
import util


flags = tf.flags
FLAGS = tf.flags.FLAGS
tfgan = tf.contrib.gan

flags.DEFINE_string('master', '', 'Name of the TensorFlow master to use.')

flags.DEFINE_string('checkpoint_dir', '/tmp/cifar10/',
                    'Directory where the model was written to.')

flags.DEFINE_string('eval_dir', '/tmp/cifar10/',
                    'Directory where the results are saved to.')

flags.DEFINE_string('dataset_dir', None, 'Location of data.')

flags.DEFINE_integer('num_images_generated', 100,
                     'Number of images to generate at once.')

flags.DEFINE_integer('num_inception_images', 10,
                     'The number of images to run through Inception at once.')

flags.DEFINE_boolean('eval_real_images', False,
                     'If `True`, run Inception network on real images.')

flags.DEFINE_boolean('conditional_eval', False,
                     'If `True`, set up a conditional GAN.')

flags.DEFINE_boolean('eval_frechet_inception_distance', True,
                     'If `True`, compute Frechet Inception distance using real '
                     'images and generated images.')

flags.DEFINE_integer('num_images_per_class', 10,
                     'When a conditional generator is used, this is the number '
                     'of images to display per class.')

flags.DEFINE_integer('max_number_of_evaluations', None,
                     'Number of times to run evaluation. If `None`, run '
                     'forever.')


def main(_, run_eval_loop=True):
  # Fetch and generate images to run through Inception.
  with tf.name_scope('inputs'):
    real_data, num_classes = _get_real_data(
        FLAGS.num_images_generated, FLAGS.dataset_dir)
    generated_data = _get_generated_data(
        FLAGS.num_images_generated, FLAGS.conditional_eval, num_classes)

  # Compute Frechet Inception Distance.
  if FLAGS.eval_frechet_inception_distance:
    fid = util.get_frechet_inception_distance(
        real_data, generated_data, FLAGS.num_images_generated,
        FLAGS.num_inception_images)
    tf.summary.scalar('frechet_inception_distance', fid)

  # Compute normal Inception scores.
  if FLAGS.eval_real_images:
    inc_score = util.get_inception_scores(
        real_data, FLAGS.num_images_generated, FLAGS.num_inception_images)
  else:
    inc_score = util.get_inception_scores(
        generated_data, FLAGS.num_images_generated, FLAGS.num_inception_images)
  tf.summary.scalar('inception_score', inc_score)

  # If conditional, display an image grid of difference classes.
  if FLAGS.conditional_eval and not FLAGS.eval_real_images:
    reshaped_imgs = util.get_image_grid(
        generated_data, FLAGS.num_images_generated, num_classes,
        FLAGS.num_images_per_class)
    tf.summary.image('generated_data', reshaped_imgs, max_outputs=1)

  # Create ops that write images to disk.
  image_write_ops = None
  if FLAGS.conditional_eval:
    reshaped_imgs = util.get_image_grid(
        generated_data, FLAGS.num_images_generated, num_classes,
        FLAGS.num_images_per_class)
    uint8_images = data_provider.float_image_to_uint8(reshaped_imgs)
    image_write_ops = tf.write_file(
        '%s/%s'% (FLAGS.eval_dir, 'conditional_cifar10.png'),
        tf.image.encode_png(uint8_images[0]))
  else:
    if FLAGS.num_images_generated >= 100:
      reshaped_imgs = tfgan.eval.image_reshaper(
          generated_data[:100], num_cols=FLAGS.num_images_per_class)
      uint8_images = data_provider.float_image_to_uint8(reshaped_imgs)
      image_write_ops = tf.write_file(
          '%s/%s'% (FLAGS.eval_dir, 'unconditional_cifar10.png'),
          tf.image.encode_png(uint8_images[0]))

  # For unit testing, use `run_eval_loop=False`.
  if not run_eval_loop: return
  tf.contrib.training.evaluate_repeatedly(
      FLAGS.checkpoint_dir,
      master=FLAGS.master,
      hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
             tf.contrib.training.StopAfterNEvalsHook(1)],
      eval_ops=image_write_ops,
      max_number_of_evaluations=FLAGS.max_number_of_evaluations)


def _get_real_data(num_images_generated, dataset_dir):
  """Get real images."""
  data, _, _, num_classes = data_provider.provide_data(
      num_images_generated, dataset_dir)
  return data, num_classes


def _get_generated_data(num_images_generated, conditional_eval, num_classes):
  """Get generated images."""
  noise = tf.random_normal([num_images_generated, 64])
  # If conditional, generate class-specific images.
  if conditional_eval:
    conditioning = util.get_generator_conditioning(
        num_images_generated, num_classes)
    generator_inputs = (noise, conditioning)
    generator_fn = networks.conditional_generator
  else:
    generator_inputs = noise
    generator_fn = networks.generator
  # In order for variables to load, use the same variable scope as in the
  # train job.
  with tf.variable_scope('Generator'):
    data = generator_fn(generator_inputs)

  return data


if __name__ == '__main__':
  tf.app.run()