estimator_cifar_benchmark.py 3.96 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Executes Estimator benchmarks and accuracy tests."""
Shining Sun's avatar
Shining Sun committed
16
17
18

from __future__ import absolute_import
from __future__ import division
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from __future__ import print_function

import os

from absl import flags
from absl.testing import flagsaver
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet import cifar10_main as cifar_main

DATA_DIR = '/data/cifar10_data/'


class EstimatorCifar10BenchmarkTests(object):
  """Benchmarks and accuracy tests for Estimator ResNet56."""

  local_flags = None

  def __init__(self, output_dir=None):
    self.oss_report_object = None
    self.output_dir = output_dir

  def resnet56_1_gpu(self):
    """Test layers model with Estimator and distribution strategies."""
    self._setup()
    flags.FLAGS.num_gpus = 1
    flags.FLAGS.data_dir = DATA_DIR
    flags.FLAGS.batch_size = 128
    flags.FLAGS.train_epochs = 182
    flags.FLAGS.model_dir = self._get_model_dir('resnet56_1_gpu')
    flags.FLAGS.resnet_size = 56
    flags.FLAGS.dtype = 'fp32'
    stats = cifar_main.run_cifar(flags.FLAGS)
    self._fill_report_object(stats)

  def resnet56_fp16_1_gpu(self):
    """Test layers FP16 model with Estimator and distribution strategies."""
    self._setup()
    flags.FLAGS.num_gpus = 1
    flags.FLAGS.data_dir = DATA_DIR
    flags.FLAGS.batch_size = 128
    flags.FLAGS.train_epochs = 182
    flags.FLAGS.model_dir = self._get_model_dir('resnet56_fp16_1_gpu')
    flags.FLAGS.resnet_size = 56
    flags.FLAGS.dtype = 'fp16'
    stats = cifar_main.run_cifar(flags.FLAGS)
    self._fill_report_object(stats)

  def resnet56_2_gpu(self):
    """Test layers model with Estimator and dist_strat. 2 GPUs."""
    self._setup()
    flags.FLAGS.num_gpus = 1
    flags.FLAGS.data_dir = DATA_DIR
    flags.FLAGS.batch_size = 128
    flags.FLAGS.train_epochs = 182
    flags.FLAGS.model_dir = self._get_model_dir('resnet56_2_gpu')
    flags.FLAGS.resnet_size = 56
    flags.FLAGS.dtype = 'fp32'
    stats = cifar_main.run_cifar(flags.FLAGS)
    self._fill_report_object(stats)

  def resnet56_fp16_2_gpu(self):
    """Test layers FP16 model with Estimator and dist_strat. 2 GPUs."""
    self._setup()
    flags.FLAGS.num_gpus = 2
    flags.FLAGS.data_dir = DATA_DIR
    flags.FLAGS.batch_size = 128
    flags.FLAGS.train_epochs = 182
    flags.FLAGS.model_dir = self._get_model_dir('resnet56_fp16_2_gpu')
    flags.FLAGS.resnet_size = 56
    flags.FLAGS.dtype = 'fp16'
    stats = cifar_main.run_cifar(flags.FLAGS)
    self._fill_report_object(stats)

  def _fill_report_object(self, stats):
    # Also "available global_step"
    if self.oss_report_object:
      self.oss_report_object.top_1 = stats['accuracy'].item()
      self.oss_report_object.top_5 = stats['accuracy_top_5'].item()
    else:
      raise ValueError('oss_report_object has not been set.')

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

  def _setup(self):
    tf.logging.set_verbosity(tf.logging.DEBUG)
    if EstimatorCifar10BenchmarkTests.local_flags is None:
      cifar_main.define_cifar_flags()
      # Loads flags to get defaults to then override.
      flags.FLAGS(['foo'])
      saved_flag_values = flagsaver.save_flag_values()
      EstimatorCifar10BenchmarkTests.local_flags = saved_flag_values
      return
    flagsaver.restore_flag_values(EstimatorCifar10BenchmarkTests.local_flags)