classifier_data_lib.py 42.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT library to process data for classification task."""

import collections
import csv
19
import importlib
20
21
22
23
import os

from absl import logging
import tensorflow as tf
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
import tensorflow_datasets as tfds
25

26
from official.nlp.bert import tokenization
27
28
29


class InputExample(object):
30
  """A single training/test example for simple seq regression/classification."""
31

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
32
33
34
35
36
37
  def __init__(self,
               guid,
               text_a,
               text_b=None,
               label=None,
               weight=None,
Chen Chen's avatar
Chen Chen committed
38
               example_id=None):
39
40
41
42
43
44
45
46
    """Constructs a InputExample.

    Args:
      guid: Unique id for the example.
      text_a: string. The untokenized text of the first sequence. For single
        sequence tasks, only this sequence must be specified.
      text_b: (Optional) string. The untokenized text of the second sequence.
        Only must be specified for sequence pair tasks.
47
48
49
      label: (Optional) string for classification, float for regression. The
        label of the example. This should be specified for train and dev
        examples, but not for test examples.
Maxim Neumann's avatar
Maxim Neumann committed
50
51
      weight: (Optional) float. The weight of the example to be used during
        training.
Chen Chen's avatar
Chen Chen committed
52
53
      example_id: (Optional) int. The int identification number of example in
        the corpus.
54
55
56
57
58
    """
    self.guid = guid
    self.text_a = text_a
    self.text_b = text_b
    self.label = label
Maxim Neumann's avatar
Maxim Neumann committed
59
    self.weight = weight
Chen Chen's avatar
Chen Chen committed
60
    self.example_id = example_id
61
62
63
64
65
66
67
68
69
70


class InputFeatures(object):
  """A single set of features of data."""

  def __init__(self,
               input_ids,
               input_mask,
               segment_ids,
               label_id,
Maxim Neumann's avatar
Maxim Neumann committed
71
               is_real_example=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
72
               weight=None,
Chen Chen's avatar
Chen Chen committed
73
               example_id=None):
74
75
76
77
78
    self.input_ids = input_ids
    self.input_mask = input_mask
    self.segment_ids = segment_ids
    self.label_id = label_id
    self.is_real_example = is_real_example
Maxim Neumann's avatar
Maxim Neumann committed
79
    self.weight = weight
Chen Chen's avatar
Chen Chen committed
80
    self.example_id = example_id
81
82
83


class DataProcessor(object):
84
  """Base class for converters for seq regression/classification datasets."""
85

86
87
  def __init__(self, process_text_fn=tokenization.convert_to_unicode):
    self.process_text_fn = process_text_fn
88
89
    self.is_regression = False
    self.label_type = None
90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
  def get_train_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the train set."""
    raise NotImplementedError()

  def get_dev_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the dev set."""
    raise NotImplementedError()

  def get_test_examples(self, data_dir):
    """Gets a collection of `InputExample`s for prediction."""
    raise NotImplementedError()

  def get_labels(self):
    """Gets the list of labels for this data set."""
    raise NotImplementedError()

  @staticmethod
  def get_processor_name():
    """Gets the string identifier of the processor."""
    raise NotImplementedError()

  @classmethod
  def _read_tsv(cls, input_file, quotechar=None):
    """Reads a tab separated value file."""
    with tf.io.gfile.GFile(input_file, "r") as f:
      reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
      lines = []
      for line in reader:
        lines.append(line)
      return lines


Vincent Etter's avatar
Vincent Etter committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
class AxProcessor(DataProcessor):
  """Processor for the AX dataset (GLUE diagnostics dataset)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "AX"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training/dev/test sets."""
    text_a_index = 1 if set_type == "test" else 8
    text_b_index = 2 if set_type == "test" else 9
    examples = []
    for i, line in enumerate(lines):
      # Skip header.
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, self.process_text_fn(line[0]))
      text_a = self.process_text_fn(line[text_a_index])
      text_b = self.process_text_fn(line[text_b_index])
      if set_type == "test":
        label = "contradiction"
      else:
        label = self.process_text_fn(line[-1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


171
172
class ColaProcessor(DataProcessor):
  """Processor for the CoLA data set (GLUE version)."""
173
174
175

  def get_train_examples(self, data_dir):
    """See base class."""
176
177
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
178
179
180

  def get_dev_examples(self, data_dir):
    """See base class."""
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "COLA"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
199
    """Creates examples for the training/dev/test sets."""
200
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
201
202
    for i, line in enumerate(lines):
      # Only the test set has a header.
203
      if set_type == "test" and i == 0:
204
        continue
205
206
207
208
209
210
211
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = self.process_text_fn(line[1])
        label = "0"
      else:
        text_a = self.process_text_fn(line[3])
        label = self.process_text_fn(line[1])
212
      examples.append(
213
          InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
214
215
    return examples

216
217
218
219

class MnliProcessor(DataProcessor):
  """Processor for the MultiNLI data set (GLUE version)."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
220
221
222
223
224
225
226
227
  def __init__(self,
               mnli_type="matched",
               process_text_fn=tokenization.convert_to_unicode):
    super(MnliProcessor, self).__init__(process_text_fn)
    if mnli_type not in ("matched", "mismatched"):
      raise ValueError("Invalid `mnli_type`: %s" % mnli_type)
    self.mnli_type = mnli_type

228
229
230
231
232
233
234
  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
235
236
237
238
239
240
241
242
    if self.mnli_type == "matched":
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
          "dev_matched")
    else:
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")),
          "dev_mismatched")
243

Tianqi Liu's avatar
Tianqi Liu committed
244
245
  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
246
247
248
249
250
251
    if self.mnli_type == "matched":
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test")
    else:
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), "test")
Tianqi Liu's avatar
Tianqi Liu committed
252

253
254
255
256
257
258
259
  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
260
    return "MNLI"
Tianqi Liu's avatar
Tianqi Liu committed
261

262
  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
263
    """Creates examples for the training/dev/test sets."""
Tianqi Liu's avatar
Tianqi Liu committed
264
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
265
    for i, line in enumerate(lines):
266
267
268
269
270
271
272
273
274
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, self.process_text_fn(line[0]))
      text_a = self.process_text_fn(line[8])
      text_b = self.process_text_fn(line[9])
      if set_type == "test":
        label = "contradiction"
      else:
        label = self.process_text_fn(line[-1])
Tianqi Liu's avatar
Tianqi Liu committed
275
276
277
278
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

279
280
281
282
283
284
285
286
287

class MrpcProcessor(DataProcessor):
  """Processor for the MRPC data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

Tianqi Liu's avatar
Tianqi Liu committed
288
289
  def get_dev_examples(self, data_dir):
    """See base class."""
290
291
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
Tianqi Liu's avatar
Tianqi Liu committed
292
293
294

  def get_test_examples(self, data_dir):
    """See base class."""
295
296
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
Tianqi Liu's avatar
Tianqi Liu committed
297
298
299

  def get_labels(self):
    """See base class."""
300
    return ["0", "1"]
Tianqi Liu's avatar
Tianqi Liu committed
301
302
303
304

  @staticmethod
  def get_processor_name():
    """See base class."""
305
306
307
    return "MRPC"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
308
    """Creates examples for the training/dev/test sets."""
309
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
310
    for i, line in enumerate(lines):
311
312
313
314
315
316
317
318
319
320
321
322
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      text_a = self.process_text_fn(line[3])
      text_b = self.process_text_fn(line[4])
      if set_type == "test":
        label = "0"
      else:
        label = self.process_text_fn(line[0])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples
Tianqi Liu's avatar
Tianqi Liu committed
323
324
325
326
327
328


class PawsxProcessor(DataProcessor):
  """Processor for the PAWS-X data set."""
  supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]

Tianqi Liu's avatar
Tianqi Liu committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
  def __init__(self,
               language="en",
               process_text_fn=tokenization.convert_to_unicode):
    super(PawsxProcessor, self).__init__(process_text_fn)
    if language == "all":
      self.languages = PawsxProcessor.supported_languages
    elif language not in PawsxProcessor.supported_languages:
      raise ValueError("language %s is not supported for PAWS-X task." %
                       language)
    else:
      self.languages = [language]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = []
    for language in self.languages:
      if language == "en":
        train_tsv = "train.tsv"
      else:
        train_tsv = "translated_train.tsv"
      # Skips the header.
      lines.extend(
Tianqi Liu's avatar
Tianqi Liu committed
351
          self._read_tsv(os.path.join(data_dir, language, train_tsv))[1:])
Tianqi Liu's avatar
Tianqi Liu committed
352
353

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
354
    for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
355
356
357
358
359
360
361
362
363
364
365
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[1])
      text_b = self.process_text_fn(line[2])
      label = self.process_text_fn(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = []
Tianqi Liu's avatar
Tianqi Liu committed
366
    for lang in PawsxProcessor.supported_languages:
Tianqi Liu's avatar
Tianqi Liu committed
367
368
      lines.extend(
          self._read_tsv(os.path.join(data_dir, lang, "dev_2k.tsv"))[1:])
Tianqi Liu's avatar
Tianqi Liu committed
369
370

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
371
    for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
372
      guid = "dev-%d" % i
Tianqi Liu's avatar
Tianqi Liu committed
373
374
375
      text_a = self.process_text_fn(line[1])
      text_b = self.process_text_fn(line[2])
      label = self.process_text_fn(line[3])
Tianqi Liu's avatar
Tianqi Liu committed
376
377
378
379
380
381
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
382
383
    examples_by_lang = {k: [] for k in self.supported_languages}
    for lang in self.supported_languages:
Tianqi Liu's avatar
Tianqi Liu committed
384
      lines = self._read_tsv(os.path.join(data_dir, lang, "test_2k.tsv"))[1:]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
385
      for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
386
        guid = "test-%d" % i
Tianqi Liu's avatar
Tianqi Liu committed
387
388
389
        text_a = self.process_text_fn(line[1])
        text_b = self.process_text_fn(line[2])
        label = self.process_text_fn(line[3])
Tianqi Liu's avatar
Tianqi Liu committed
390
        examples_by_lang[lang].append(
Tianqi Liu's avatar
Tianqi Liu committed
391
392
393
394
395
396
397
398
399
400
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
401
402
403
    return "XTREME-PAWS-X"


404
405
class QnliProcessor(DataProcessor):
  """Processor for the QNLI data set (GLUE version)."""
Saurabh Saxena's avatar
Saurabh Saxena committed
406
407
408
409
410
411
412
413
414

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
415
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched")
Saurabh Saxena's avatar
Saurabh Saxena committed
416
417
418
419
420
421
422
423

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
424
    return ["entailment", "not_entailment"]
Saurabh Saxena's avatar
Saurabh Saxena committed
425
426
427
428

  @staticmethod
  def get_processor_name():
    """See base class."""
429
    return "QNLI"
Saurabh Saxena's avatar
Saurabh Saxena committed
430
431

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
432
    """Creates examples for the training/dev/test sets."""
Saurabh Saxena's avatar
Saurabh Saxena committed
433
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
434
    for i, line in enumerate(lines):
Saurabh Saxena's avatar
Saurabh Saxena committed
435
436
      if i == 0:
        continue
437
438
439
440
441
442
443
444
445
      guid = "%s-%s" % (set_type, 1)
      if set_type == "test":
        text_a = tokenization.convert_to_unicode(line[1])
        text_b = tokenization.convert_to_unicode(line[2])
        label = "entailment"
      else:
        text_a = tokenization.convert_to_unicode(line[1])
        text_b = tokenization.convert_to_unicode(line[2])
        label = tokenization.convert_to_unicode(line[-1])
Tianqi Liu's avatar
Tianqi Liu committed
446
447
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
Saurabh Saxena's avatar
Saurabh Saxena committed
448
449
450
    return examples


451
452
class QqpProcessor(DataProcessor):
  """Processor for the QQP data set (GLUE version)."""
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
476
    return "QQP"
477
478

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
479
    """Creates examples for the training/dev/test sets."""
480
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
481
    for i, line in enumerate(lines):
482
483
484
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, line[0])
485
486
487
488
489
490
491
492
493
494
495
496
      if set_type == "test":
        text_a = line[1]
        text_b = line[2]
        label = "0"
      else:
        # There appear to be some garbage lines in the train dataset.
        try:
          text_a = line[3]
          text_b = line[4]
          label = line[5]
        except IndexError:
          continue
497
      examples.append(
498
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
499
500
501
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
class RteProcessor(DataProcessor):
  """Processor for the RTE data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    # All datasets are converted to 2-class split, where for 3-class datasets we
    # collapse neutral and contradiction into not_entailment.
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "RTE"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
532
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
533
534
535
536
537
    examples = []
    for i, line in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
538
539
      text_a = tokenization.convert_to_unicode(line[1])
      text_b = tokenization.convert_to_unicode(line[2])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
540
541
542
543
544
545
546
547
548
      if set_type == "test":
        label = "entailment"
      else:
        label = tokenization.convert_to_unicode(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
class SstProcessor(DataProcessor):
  """Processor for the SST-2 data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "SST-2"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
577
    """Creates examples for the training/dev/test sets."""
578
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
579
    for i, line in enumerate(lines):
580
581
582
583
584
585
586
587
588
589
590
591
592
593
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = tokenization.convert_to_unicode(line[1])
        label = "0"
      else:
        text_a = tokenization.convert_to_unicode(line[0])
        label = tokenization.convert_to_unicode(line[1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
    return examples


594
595
596
597
598
599
600
601
class StsBProcessor(DataProcessor):
  """Processor for the STS-B data set (GLUE version)."""

  def __init__(self, process_text_fn=tokenization.convert_to_unicode):
    super(StsBProcessor, self).__init__(process_text_fn=process_text_fn)
    self.is_regression = True
    self.label_type = float
    self._labels = None
602
603
604
605
606
607
608
609
610

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
611
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
612
613
614
615
616
617
618
619

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
620
    return self._labels
621
622
623
624

  @staticmethod
  def get_processor_name():
    """See base class."""
625
    return "STS-B"
626
627

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
628
    """Creates examples for the training/dev/test sets."""
629
    examples = []
630
    for i, line in enumerate(lines):
631
632
      if i == 0:
        continue
633
634
635
      guid = "%s-%s" % (set_type, i)
      text_a = tokenization.convert_to_unicode(line[7])
      text_b = tokenization.convert_to_unicode(line[8])
636
      if set_type == "test":
637
        label = 0.0
638
      else:
639
        label = self.label_type(tokenization.convert_to_unicode(line[9]))
640
641
642
643
644
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
645
class TfdsProcessor(DataProcessor):
Maxim Neumann's avatar
Maxim Neumann committed
646
  """Processor for generic text classification and regression TFDS data set.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
647
648
649
650
651
652
653
654
655
656

  The TFDS parameters are expected to be provided in the tfds_params string, in
  a comma-separated list of parameter assignments.
  Examples:
    tfds_params="dataset=scicite,text_key=string"
    tfds_params="dataset=imdb_reviews,test_split=,dev_split=test"
    tfds_params="dataset=glue/cola,text_key=sentence"
    tfds_params="dataset=glue/sst2,text_key=sentence"
    tfds_params="dataset=glue/qnli,text_key=question,text_b_key=sentence"
    tfds_params="dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2"
Maxim Neumann's avatar
Maxim Neumann committed
657
658
    tfds_params="dataset=glue/stsb,text_key=sentence1,text_b_key=sentence2,"
                "is_regression=true,label_type=float"
Maxim Neumann's avatar
Maxim Neumann committed
659
660
    tfds_params="dataset=snli,text_key=premise,text_b_key=hypothesis,"
                "skip_label=-1"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
661
662
663
664
  Possible parameters (please refer to the documentation of Tensorflow Datasets
  (TFDS) for the meaning of individual parameters):
    dataset: Required dataset name (potentially with subset and version number).
    data_dir: Optional TFDS source root directory.
665
    module_import: Optional Dataset module to import.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
666
667
668
669
670
671
672
673
674
    train_split: Name of the train split (defaults to `train`).
    dev_split: Name of the dev split (defaults to `validation`).
    test_split: Name of the test split (defaults to `test`).
    text_key: Key of the text_a feature (defaults to `text`).
    text_b_key: Key of the second text feature if available.
    label_key: Key of the label feature (defaults to `label`).
    test_text_key: Key of the text feature to use in test set.
    test_text_b_key: Key of the second text feature to use in test set.
    test_label: String to be used as the label for all test examples.
Maxim Neumann's avatar
Maxim Neumann committed
675
    label_type: Type of the label key (defaults to `int`).
Maxim Neumann's avatar
Maxim Neumann committed
676
    weight_key: Key of the float sample weight (is not used if not provided).
Maxim Neumann's avatar
Maxim Neumann committed
677
    is_regression: Whether the task is a regression problem (defaults to False).
Maxim Neumann's avatar
Maxim Neumann committed
678
    skip_label: Skip examples with given label (defaults to None).
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
679
680
  """

Tianqi Liu's avatar
Tianqi Liu committed
681
682
  def __init__(self,
               tfds_params,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
683
684
685
               process_text_fn=tokenization.convert_to_unicode):
    super(TfdsProcessor, self).__init__(process_text_fn)
    self._process_tfds_params_str(tfds_params)
686
687
688
    if self.module_import:
      importlib.import_module(self.module_import)

Tianqi Liu's avatar
Tianqi Liu committed
689
690
    self.dataset, info = tfds.load(
        self.dataset_name, data_dir=self.data_dir, with_info=True)
Maxim Neumann's avatar
Maxim Neumann committed
691
692
693
694
    if self.is_regression:
      self._labels = None
    else:
      self._labels = list(range(info.features[self.label_key].num_classes))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
695
696
697

  def _process_tfds_params_str(self, params_str):
    """Extracts TFDS parameters from a comma-separated assignements string."""
Maxim Neumann's avatar
Maxim Neumann committed
698
699
700
    dtype_map = {"int": int, "float": float}
    cast_str_to_bool = lambda s: s.lower() not in ["false", "0"]

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
701
702
703
704
    tuples = [x.split("=") for x in params_str.split(",")]
    d = {k.strip(): v.strip() for k, v in tuples}
    self.dataset_name = d["dataset"]  # Required.
    self.data_dir = d.get("data_dir", None)
705
    self.module_import = d.get("module_import", None)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
706
707
708
709
710
711
712
713
714
    self.train_split = d.get("train_split", "train")
    self.dev_split = d.get("dev_split", "validation")
    self.test_split = d.get("test_split", "test")
    self.text_key = d.get("text_key", "text")
    self.text_b_key = d.get("text_b_key", None)
    self.label_key = d.get("label_key", "label")
    self.test_text_key = d.get("test_text_key", self.text_key)
    self.test_text_b_key = d.get("test_text_b_key", self.text_b_key)
    self.test_label = d.get("test_label", "test_example")
Maxim Neumann's avatar
Maxim Neumann committed
715
716
    self.label_type = dtype_map[d.get("label_type", "int")]
    self.is_regression = cast_str_to_bool(d.get("is_regression", "False"))
Maxim Neumann's avatar
Maxim Neumann committed
717
    self.weight_key = d.get("weight_key", None)
Maxim Neumann's avatar
Maxim Neumann committed
718
719
720
    self.skip_label = d.get("skip_label", None)
    if self.skip_label is not None:
      self.skip_label = self.label_type(self.skip_label)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740

  def get_train_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.train_split, "train")

  def get_dev_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.dev_split, "dev")

  def get_test_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.test_split, "test")

  def get_labels(self):
    return self._labels

  def get_processor_name(self):
    return "TFDS_" + self.dataset_name

  def _create_examples(self, split_name, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
741
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
742
743
744
745
    if split_name not in self.dataset:
      raise ValueError("Split {} not available.".format(split_name))
    dataset = self.dataset[split_name].as_numpy_iterator()
    examples = []
Maxim Neumann's avatar
Maxim Neumann committed
746
    text_b, weight = None, None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
747
748
749
750
751
752
753
754
755
756
757
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = self.process_text_fn(example[self.test_text_key])
        if self.test_text_b_key:
          text_b = self.process_text_fn(example[self.test_text_b_key])
        label = self.test_label
      else:
        text_a = self.process_text_fn(example[self.text_key])
        if self.text_b_key:
          text_b = self.process_text_fn(example[self.text_b_key])
Maxim Neumann's avatar
Maxim Neumann committed
758
        label = self.label_type(example[self.label_key])
Maxim Neumann's avatar
Maxim Neumann committed
759
760
        if self.skip_label is not None and label == self.skip_label:
          continue
Maxim Neumann's avatar
Maxim Neumann committed
761
762
      if self.weight_key:
        weight = float(example[self.weight_key])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
763
      examples.append(
Tianqi Liu's avatar
Tianqi Liu committed
764
765
766
767
768
769
          InputExample(
              guid=guid,
              text_a=text_a,
              text_b=text_b,
              label=label,
              weight=weight))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
770
771
772
    return examples


773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
class WnliProcessor(DataProcessor):
  """Processor for the WNLI data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "WNLI"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
801
    """Creates examples for the training/dev/test sets."""
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
    examples = []
    for i, line in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      text_a = tokenization.convert_to_unicode(line[1])
      text_b = tokenization.convert_to_unicode(line[2])
      if set_type == "test":
        label = "0"
      else:
        label = tokenization.convert_to_unicode(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
class XnliProcessor(DataProcessor):
  """Processor for the XNLI data set."""
  supported_languages = [
      "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
      "ur", "vi", "zh"
  ]

  def __init__(self,
               language="en",
               process_text_fn=tokenization.convert_to_unicode):
    super(XnliProcessor, self).__init__(process_text_fn)
    if language == "all":
      self.languages = XnliProcessor.supported_languages
    elif language not in XnliProcessor.supported_languages:
      raise ValueError("language %s is not supported for XNLI task." % language)
    else:
      self.languages = [language]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = []
    for language in self.languages:
      # Skips the header.
      lines.extend(
          self._read_tsv(
              os.path.join(data_dir, "multinli",
                           "multinli.train.%s.tsv" % language))[1:])

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
847
    for i, line in enumerate(lines):
848
849
850
851
852
853
854
855
856
857
858
859
860
861
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      if label == self.process_text_fn("contradictory"):
        label = self.process_text_fn("contradiction")
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
862
    for i, line in enumerate(lines):
863
864
865
866
867
868
869
870
871
872
873
874
875
876
      if i == 0:
        continue
      guid = "dev-%d" % i
      text_a = self.process_text_fn(line[6])
      text_b = self.process_text_fn(line[7])
      label = self.process_text_fn(line[1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.test.tsv"))
    examples_by_lang = {k: [] for k in XnliProcessor.supported_languages}
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
877
    for i, line in enumerate(lines):
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
      if i == 0:
        continue
      guid = "test-%d" % i
      language = self.process_text_fn(line[0])
      text_a = self.process_text_fn(line[6])
      text_b = self.process_text_fn(line[7])
      label = self.process_text_fn(line[1])
      examples_by_lang[language].append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XNLI"


class XtremePawsxProcessor(DataProcessor):
  """Processor for the XTREME PAWS-X data set."""
  supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
907
    for i, line in enumerate(lines):
908
909
910
911
912
913
914
915
916
917
918
919
920
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
921
    for i, line in enumerate(lines):
922
923
924
925
926
927
928
929
930
931
932
933
934
      guid = "dev-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
    examples_by_lang = {k: [] for k in self.supported_languages}
    for lang in self.supported_languages:
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
935
      for i, line in enumerate(lines):
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
        guid = "test-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = "0"
        examples_by_lang[lang].append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XTREME-PAWS-X"


class XtremeXnliProcessor(DataProcessor):
  """Processor for the XTREME XNLI data set."""
  supported_languages = [
      "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
      "ur", "vi", "zh"
  ]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
966
    for i, line in enumerate(lines):
967
968
969
970
971
972
973
974
975
976
977
978
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
979
    for i, line in enumerate(lines):
980
981
982
983
984
985
986
987
988
989
990
991
992
      guid = "dev-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
    examples_by_lang = {k: [] for k in self.supported_languages}
    for lang in self.supported_languages:
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
993
      for i, line in enumerate(lines):
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
        guid = f"test-{i}"
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = "contradiction"
        examples_by_lang[lang].append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XTREME-XNLI"


1012
1013
1014
1015
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
  """Converts a single `InputExample` into a single `InputFeatures`."""
  label_map = {}
Maxim Neumann's avatar
Maxim Neumann committed
1016
1017
1018
  if label_list:
    for (i, label) in enumerate(label_list):
      label_map[label] = i
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085

  tokens_a = tokenizer.tokenize(example.text_a)
  tokens_b = None
  if example.text_b:
    tokens_b = tokenizer.tokenize(example.text_b)

  if tokens_b:
    # Modifies `tokens_a` and `tokens_b` in place so that the total
    # length is less than the specified length.
    # Account for [CLS], [SEP], [SEP] with "- 3"
    _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
  else:
    # Account for [CLS] and [SEP] with "- 2"
    if len(tokens_a) > max_seq_length - 2:
      tokens_a = tokens_a[0:(max_seq_length - 2)]

  # The convention in BERT is:
  # (a) For sequence pairs:
  #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
  #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
  # (b) For single sequences:
  #  tokens:   [CLS] the dog is hairy . [SEP]
  #  type_ids: 0     0   0   0  0     0 0
  #
  # Where "type_ids" are used to indicate whether this is the first
  # sequence or the second sequence. The embedding vectors for `type=0` and
  # `type=1` were learned during pre-training and are added to the wordpiece
  # embedding vector (and position vector). This is not *strictly* necessary
  # since the [SEP] token unambiguously separates the sequences, but it makes
  # it easier for the model to learn the concept of sequences.
  #
  # For classification tasks, the first vector (corresponding to [CLS]) is
  # used as the "sentence vector". Note that this only makes sense because
  # the entire model is fine-tuned.
  tokens = []
  segment_ids = []
  tokens.append("[CLS]")
  segment_ids.append(0)
  for token in tokens_a:
    tokens.append(token)
    segment_ids.append(0)
  tokens.append("[SEP]")
  segment_ids.append(0)

  if tokens_b:
    for token in tokens_b:
      tokens.append(token)
      segment_ids.append(1)
    tokens.append("[SEP]")
    segment_ids.append(1)

  input_ids = tokenizer.convert_tokens_to_ids(tokens)

  # The mask has 1 for real tokens and 0 for padding tokens. Only real
  # tokens are attended to.
  input_mask = [1] * len(input_ids)

  # Zero-pad up to the sequence length.
  while len(input_ids) < max_seq_length:
    input_ids.append(0)
    input_mask.append(0)
    segment_ids.append(0)

  assert len(input_ids) == max_seq_length
  assert len(input_mask) == max_seq_length
  assert len(segment_ids) == max_seq_length

Maxim Neumann's avatar
Maxim Neumann committed
1086
  label_id = label_map[example.label] if label_map else example.label
1087
1088
  if ex_index < 5:
    logging.info("*** Example ***")
1089
1090
1091
1092
1093
1094
    logging.info("guid: %s", (example.guid))
    logging.info("tokens: %s",
                 " ".join([tokenization.printable_text(x) for x in tokens]))
    logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
    logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
    logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1095
    logging.info("label: %s (id = %s)", example.label, str(label_id))
Maxim Neumann's avatar
Maxim Neumann committed
1096
    logging.info("weight: %s", example.weight)
Chen Chen's avatar
Chen Chen committed
1097
    logging.info("example_id: %s", example.example_id)
1098
1099
1100
1101
1102
1103

  feature = InputFeatures(
      input_ids=input_ids,
      input_mask=input_mask,
      segment_ids=segment_ids,
      label_id=label_id,
Maxim Neumann's avatar
Maxim Neumann committed
1104
      is_real_example=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1105
      weight=example.weight,
Chen Chen's avatar
Chen Chen committed
1106
      example_id=example.example_id)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1107

1108
1109
1110
  return feature


Tianqi Liu's avatar
Tianqi Liu committed
1111
1112
1113
1114
1115
1116
def file_based_convert_examples_to_features(examples,
                                            label_list,
                                            max_seq_length,
                                            tokenizer,
                                            output_file,
                                            label_type=None):
1117
1118
  """Convert a set of `InputExample`s to a TFRecord file."""

1119
  tf.io.gfile.makedirs(os.path.dirname(output_file))
1120
1121
  writer = tf.io.TFRecordWriter(output_file)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1122
  for ex_index, example in enumerate(examples):
1123
    if ex_index % 10000 == 0:
1124
      logging.info("Writing example %d of %d", ex_index, len(examples))
1125
1126
1127
1128
1129
1130
1131

    feature = convert_single_example(ex_index, example, label_list,
                                     max_seq_length, tokenizer)

    def create_int_feature(values):
      f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
      return f
Tianqi Liu's avatar
Tianqi Liu committed
1132

Maxim Neumann's avatar
Maxim Neumann committed
1133
1134
1135
    def create_float_feature(values):
      f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
      return f
1136
1137
1138
1139
1140

    features = collections.OrderedDict()
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)
Maxim Neumann's avatar
Maxim Neumann committed
1141
1142
    if label_type is not None and label_type == float:
      features["label_ids"] = create_float_feature([feature.label_id])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1143
    elif feature.label_id is not None:
Maxim Neumann's avatar
Maxim Neumann committed
1144
      features["label_ids"] = create_int_feature([feature.label_id])
1145
1146
    features["is_real_example"] = create_int_feature(
        [int(feature.is_real_example)])
Maxim Neumann's avatar
Maxim Neumann committed
1147
1148
    if feature.weight is not None:
      features["weight"] = create_float_feature([feature.weight])
Chen Chen's avatar
Chen Chen committed
1149
1150
1151
1152
    if feature.example_id is not None:
      features["example_id"] = create_int_feature([feature.example_id])
    else:
      features["example_id"] = create_int_feature([ex_index])
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
  writer.close()


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
  """Truncates a sequence pair in place to the maximum length."""

  # This is a simple heuristic which will always truncate the longer sequence
  # one token at a time. This makes more sense than truncating an equal percent
  # of tokens from each, since if one sequence is very short then each token
  # that's truncated likely contains more information than a longer sequence.
  while True:
    total_length = len(tokens_a) + len(tokens_b)
    if total_length <= max_length:
      break
    if len(tokens_a) > len(tokens_b):
      tokens_a.pop()
    else:
      tokens_b.pop()


def generate_tf_record_from_data_file(processor,
                                      data_dir,
1178
                                      tokenizer,
1179
1180
                                      train_data_output_path=None,
                                      eval_data_output_path=None,
Tianqi Liu's avatar
Tianqi Liu committed
1181
                                      test_data_output_path=None,
1182
                                      max_seq_length=128):
1183
1184
1185
1186
1187
  """Generates and saves training data into a tf record file.

  Arguments:
      processor: Input processor object to be used for generating data. Subclass
        of `DataProcessor`.
1188
      data_dir: Directory that contains train/eval/test data to process.
1189
      tokenizer: The tokenizer to be applied on the data.
1190
1191
1192
1193
      train_data_output_path: Output to which processed tf record for training
        will be saved.
      eval_data_output_path: Output to which processed tf record for evaluation
        will be saved.
Tianqi Liu's avatar
Tianqi Liu committed
1194
      test_data_output_path: Output to which processed tf record for testing
Tianqi Liu's avatar
Tianqi Liu committed
1195
1196
        will be saved. Must be a pattern template with {} if processor has
        language specific test data.
1197
1198
1199
1200
1201
1202
1203
1204
1205
      max_seq_length: Maximum sequence length of the to be generated
        training/eval data.

  Returns:
      A dictionary containing input meta data.
  """
  assert train_data_output_path or eval_data_output_path

  label_list = processor.get_labels()
Maxim Neumann's avatar
Maxim Neumann committed
1206
1207
  label_type = getattr(processor, "label_type", None)
  is_regression = getattr(processor, "is_regression", False)
Maxim Neumann's avatar
Maxim Neumann committed
1208
  has_sample_weights = getattr(processor, "weight_key", False)
1209
  assert train_data_output_path
Maxim Neumann's avatar
Maxim Neumann committed
1210

1211
1212
1213
  train_input_data_examples = processor.get_train_examples(data_dir)
  file_based_convert_examples_to_features(train_input_data_examples, label_list,
                                          max_seq_length, tokenizer,
Tianqi Liu's avatar
Tianqi Liu committed
1214
                                          train_data_output_path, label_type)
1215
1216
1217
1218
1219
1220
  num_training_data = len(train_input_data_examples)

  if eval_data_output_path:
    eval_input_data_examples = processor.get_dev_examples(data_dir)
    file_based_convert_examples_to_features(eval_input_data_examples,
                                            label_list, max_seq_length,
Maxim Neumann's avatar
Maxim Neumann committed
1221
1222
                                            tokenizer, eval_data_output_path,
                                            label_type)
1223

1224
1225
1226
1227
1228
1229
  meta_data = {
      "processor_type": processor.get_processor_name(),
      "train_data_size": num_training_data,
      "max_seq_length": max_seq_length,
  }

Tianqi Liu's avatar
Tianqi Liu committed
1230
1231
1232
1233
1234
  if test_data_output_path:
    test_input_data_examples = processor.get_test_examples(data_dir)
    if isinstance(test_input_data_examples, dict):
      for language, examples in test_input_data_examples.items():
        file_based_convert_examples_to_features(
Tianqi Liu's avatar
Tianqi Liu committed
1235
1236
            examples, label_list, max_seq_length, tokenizer,
            test_data_output_path.format(language), label_type)
1237
        meta_data["test_{}_data_size".format(language)] = len(examples)
Tianqi Liu's avatar
Tianqi Liu committed
1238
1239
1240
    else:
      file_based_convert_examples_to_features(test_input_data_examples,
                                              label_list, max_seq_length,
Maxim Neumann's avatar
Maxim Neumann committed
1241
1242
                                              tokenizer, test_data_output_path,
                                              label_type)
1243
      meta_data["test_data_size"] = len(test_input_data_examples)
Tianqi Liu's avatar
Tianqi Liu committed
1244

Maxim Neumann's avatar
Maxim Neumann committed
1245
1246
1247
1248
1249
1250
  if is_regression:
    meta_data["task_type"] = "bert_regression"
    meta_data["label_type"] = {int: "int", float: "float"}[label_type]
  else:
    meta_data["task_type"] = "bert_classification"
    meta_data["num_labels"] = len(processor.get_labels())
Maxim Neumann's avatar
Maxim Neumann committed
1251
1252
  if has_sample_weights:
    meta_data["has_sample_weights"] = True
1253
1254
1255
1256
1257

  if eval_data_output_path:
    meta_data["eval_data_size"] = len(eval_input_data_examples)

  return meta_data